{
"cells": [
{
"cell_type": "markdown",
"id": "23ebf1ed",
"metadata": {},
"source": [
"# Seewassertemperatur aus Satellitendaten abgeleitet\n",
"\n",
"Dieses Datenset liefert tägliche Werte der Oberflächenwassertemperatur von Seen (LSWT) am Vormittag, abgeleitet aus Satellitendaten, zusammen mit zugehöriger Unsicherheit und Qualitätsstufen. Die Daten, die von den ATSR- und AVHRR-Sensoren stammen, wurden zur Konsistenzanpassung bias-korrigiert und können aufgrund fehlender Beobachtungen Lücken enthalten. LSWT ist eine essenzielle Klimavariable, die für das Verständnis der Seeökologie, hydrologischer Prozesse und großräumiger Klimawechselwirkungen von entscheidender Bedeutung ist. Die Datenentwicklung wurde durch das UK NERC GloboLakes-Projekt unterstützt, und zukünftige Verbesserungen erfolgen im Rahmen der ESA Climate Change Initiative.\n",
"\n",
"**Schnellnavigation:**\n",
"* [Herunterladen und Entpacken des Datensatzes](#herunterladen-und-entpacken-des-datensatzes)\n",
"* [NetCDF4-Dateien zu einer einzigen NetCDF4-Datei zusammenführen](#netcdf4-dateien-zu-einer-einzigen-netcdf4-datei-zusammenfuhren)\n",
"* [Untersuchen der Metadaten der netCDF4-Datei](#untersuchen-der-metadaten-der-netcdf4-datei)\n",
"* [Exportieren der Zeitreihe im CSV-Format](#exportieren-der-zeitreihe-im-csv-format)\n",
"* [Analyse und Visualisierung Optionen](#analyse-und-visualisierung-optionen)\n",
"* [Exportieren der NetCDF4-Datei nach GeoTIFF](#exportieren-der-netcdf4-datei-nach-geotiff)\n",
"* [Zusätzliche Visualisierung mit einem Kalenderdiagramm](#zusatzliche-visualisierung-mit-einem-kalenderdiagramm)\n",
"\n",
"**Information on Dataset:**\n",
"* Quelle: Satellite Lake Water Temperature\n",
"* Author: T. Tewes (City of Konstanz)\n",
"* Notebook Version: 1.3 (Updated: January 17, 2025)"
]
},
{
"cell_type": "markdown",
"id": "7dda6192",
"metadata": {},
"source": [
"---\n",
"\n",
"Laden Sie bitte über den unten stehenden Link eine Kopie dieses Notebooks herunter, um es lokal auf Ihrem System auszuprobieren:\n",
"\n",
"
\n",
"\n",
"Öffnen Sie es nach dem Download in Jupyter Notebook und beginnen Sie mit der schrittweisen Ausführung des Codes.\n",
"\n",
"---"
]
},
{
"cell_type": "markdown",
"id": "dacce046",
"metadata": {},
"source": [
"## 1. Festlegen der Pfade und Arbeitsverzeichnisse"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "a74e11ed",
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"\n",
"''' ---- Verzeichnisse hier angeben ---- '''\n",
"download_folder = r\".\\data\\satellite-lake-water-temperature\\download\"\n",
"working_folder = r\".\\data\\satellite-lake-water-temperature\\working\"\n",
"geotiff_folder = r\".\\data\\satellite-lake-water-temperature\\geotiff\"\n",
"csv_folder = r\".\\data\\satellite-lake-water-temperature\\csv\"\n",
"output_folder = r\".\\data\\satellite-lake-water-temperature\\output\"\n",
"''' ----- Ende der Angaben ---- '''\n",
"\n",
"os.makedirs(download_folder, exist_ok=True)\n",
"os.makedirs(working_folder, exist_ok=True)\n",
"os.makedirs(geotiff_folder, exist_ok=True)\n",
"os.makedirs(csv_folder, exist_ok=True)\n",
"os.makedirs(output_folder, exist_ok=True)"
]
},
{
"cell_type": "markdown",
"id": "3c4fbb35",
"metadata": {},
"source": [
"## 2. Herunterladen und Entpacken des Datensatzes"
]
},
{
"cell_type": "markdown",
"id": "d9519e01",
"metadata": {},
"source": [
"### 2.1 Authentifizierung"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "507616bf",
"metadata": {},
"outputs": [],
"source": [
"import cdsapi\n",
"\n",
"def main():\n",
" # API-Key für die Authentifizierung\n",
" api_key = \"fdae60fd-35d4-436f-825c-c63fedab94a4\"\n",
" api_url = \"https://cds.climate.copernicus.eu/api\"\n",
"\n",
" # Erstellung des CDS-API-Clients\n",
" client = cdsapi.Client(url=api_url, key=api_key)\n",
" return client"
]
},
{
"cell_type": "markdown",
"id": "233eefdd",
"metadata": {},
"source": [
"### 2.2 Definieren Sie die „request“ und laden Sie den Datensatz herunter"
]
},
{
"cell_type": "markdown",
"id": "c163b0fd",
"metadata": {},
"source": [
"Definieren Sie zusätzliche Anfragefelder, um sicherzustellen, dass die Anfrage innerhalb der Dateigrößenbeschränkung bleibt. Bei der Arbeit mit Geodaten oder APIs, die Karten- oder Satellitenbilder zurückgeben, kann die Begrenzung des geografischen Interessengebiets verhindern, dass Anfragen zu groß werden und die Datei- oder Verarbeitungsgrenzen überschreiten. Begrenzungsrahmen (Bounding Boxes) werden verwendet, um das geografische Gebiet für solche Anfragen festzulegen.\n",
"\n",
"Die untenstehenden Koordinaten wurden mit dem Tool BBox Extractor ermittelt.\n",
"\n",
"*BBox Extractor ist ein webbasiertes Tool, das Benutzern hilft, interaktiv Begrenzungsrahmen-Koordinaten im WGS84-Format (Breite/Länge) auszuwählen und zu generieren. Dies ist besonders nützlich für APIs oder Datensätze, die eine Eingabe eines geografischen Gebiets erfordern*"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "657e4886",
"metadata": {},
"outputs": [],
"source": [
"# Definieren der Begrenzungsrahmen-Koordinaten (WGS84-Format) für die Region Bodensee.\n",
"# Das Koordinatenformat lautet: [Norden, Westen, Süden, Osten]\n",
"bbox_wgs84_constance = [48.0, 8.7, 47.3, 9.9]"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "a942975f",
"metadata": {},
"outputs": [],
"source": [
"# Geben Sie das Jahr von Interesse für die Datenanforderung an.\n",
"# Die entsprechende Datenversion hängt vom Jahr ab.\n",
"year = 2007\n",
"\n",
"# Bestimmen Sie die Datenversion basierend auf dem Jahr:\n",
"# Version \"4_5_1\" wird für Jahre bis 2020 verwendet, und \"4_5_2\" für spätere Jahre.\n",
"if 1900 <= year <= 2100: # Überprüfen Sie den gültigen Jahresbereich für Robustheit.\n",
" version = \"4_5_1\" if year <= 2020 else \"4_5_2\"\n",
"else:\n",
" raise ValueError(f\"Ungültiges Jahr: {year}. Bitte geben Sie ein Jahr zwischen 1900 und 2100 an.\")"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "a199e44d",
"metadata": {},
"outputs": [],
"source": [
"# Definition des Datensatzes und der Request-Parameter\n",
"dataset = \"satellite-lake-water-temperature\"\n",
"request = {\n",
" \"variable\": \"all\",\n",
" \"year\": [f\"{year}\"],\n",
" \"month\": [\n",
" \"01\", \"02\", \"03\",\n",
" \"04\", \"05\", \"06\",\n",
" \"07\", \"08\", \"09\",\n",
" \"10\", \"11\", \"12\"\n",
" ],\n",
" \"day\": [\n",
" \"01\", \"02\", \"03\",\n",
" \"04\", \"05\", \"06\",\n",
" \"07\", \"08\", \"09\",\n",
" \"10\", \"11\", \"12\",\n",
" \"13\", \"14\", \"15\",\n",
" \"16\", \"17\", \"18\",\n",
" \"19\", \"20\", \"21\",\n",
" \"22\", \"23\", \"24\",\n",
" \"25\", \"26\", \"27\",\n",
" \"28\", \"29\", \"30\",\n",
" \"31\"\n",
" ],\n",
" \"version\": version,\n",
" \"area\": bbox_wgs84_constance\n",
"}"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "cff16f16",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Datensatz bereits heruntergeladen.\n"
]
}
],
"source": [
"# Führen Sie es aus, um den Datensatz herunterzuladen:\n",
"def main_retrieve():\n",
" dataset_filename = f\"{dataset}_{request['year'][0]}.zip\"\n",
" dataset_filepath = os.path.join(download_folder, dataset_filename)\n",
" \n",
" # Den Datensatz nur herunterladen, wenn er noch nicht heruntergeladen wurde\n",
" if not os.path.isfile(dataset_filepath):\n",
" # Rufen Sie den CDS-Client nur auf, wenn der Datensatz noch nicht heruntergeladen wurde.\n",
" client = main()\n",
" # Den Datensatz mit den definierten Anforderungsparametern herunterladen\n",
" client.retrieve(dataset, request, dataset_filepath)\n",
" else:\n",
" print(\"Datensatz bereits heruntergeladen.\")\n",
" \n",
"if __name__ == \"__main__\":\n",
" main_retrieve()"
]
},
{
"cell_type": "markdown",
"id": "df293df1",
"metadata": {},
"source": [
"### 2.3 Extrahieren Sie die ZIP-Dateien in Ordner"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "90fd0d19",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Ordner ist nicht leer. Entpacken überspringen.\n"
]
}
],
"source": [
"import zipfile\n",
"\n",
"# Erstellen des Dateinamens und des Dateipfads für die ZIP-Datei des Datensatzes\n",
"dataset_filename = f\"{dataset}_{year}.zip\"\n",
"dataset_filepath = os.path.join(download_folder, dataset_filename)\n",
"\n",
"# Erstellen Sie einen Ordner zum Extrahieren der ZIP-Datei basierend auf dem ausgewählten Jahr\n",
"extract_folder = os.path.join(working_folder, str(year))\n",
"\n",
"# Entpacken der ZIP-Datei\n",
"try:\n",
" os.makedirs(extract_folder, exist_ok=True)\n",
" \n",
" if not os.listdir(extract_folder):\n",
" # Versuchen Sie, die ZIP-Datei zu öffnen und zu extrahieren\n",
" with zipfile.ZipFile(dataset_filepath, 'r') as zip_ref:\n",
" zip_ref.extractall(extract_folder)\n",
" print(f\"Dateien erfolgreich extrahiert nach: {extract_folder}\")\n",
" else:\n",
" print(\"Ordner ist nicht leer. Entpacken überspringen.\")\n",
"except FileNotFoundError:\n",
" print(f\"Fehler: Die Datei {dataset_filepath} wurde nicht gefunden.\")\n",
"except zipfile.BadZipFile:\n",
" print(f\"Fehler: Die Datei {dataset_filepath} ist keine gültige ZIP-Datei.\")\n",
"except Exception as e:\n",
" print(f\"Ein unerwarteter Fehler ist aufgetreten: {e}\")"
]
},
{
"cell_type": "markdown",
"id": "06d6d514",
"metadata": {},
"source": [
"## 3. NetCDF4-Dateien zu einer einzigen NetCDF4-Datei zusammenführen\n",
"\n",
"Viele **jährliche Datensätze** werden als tägliche NetCDF4-Dateien bereitgestellt, wobei jede Datei einen Tag des Jahres repräsentiert *(365 Dateien für normale Jahre, 366 Dateien für Schaltjahre)*. Die Verwaltung dieser zahlreichen Dateien kann mühsam sein, insbesondere beim Datenzugriff oder bei der Visualisierung.\n",
"\n",
"Um Arbeitsabläufe zu vereinfachen und die Effizienz der Datenverarbeitung zu verbessern, werden alle täglichen Datensätze eines bestimmten Jahres in einer **einzigen jährlichen NetCDF4-Datei** zusammengeführt. Diese Konsolidierung erleichtert die spätere Datenverarbeitung, beispielsweise für die Visualisierung oder statistische Auswertungen.\n",
"\n",
"> Wichtig: Tägliche Datensätze können spärliche oder fehlende Daten enthalten. Daher kann die zusammengeführte NetCDF4-Datei, die zusammengeführte GeoTIFF-Datei oder einzelne GeoTIFF-Dateien leere Zeitpunkte enthalten."
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "00e34cfa",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Zusammengeführte NetCDF-Datei für das Jahr 2007 existiert bereits. Überspringe Zusammenführung.\n"
]
}
],
"source": [
"import xarray as xr\n",
"\n",
"# Definiere den Dateipfad für die zusammengeführte NetCDF-Datei (1 Datei pro Jahr)\n",
"nc_filepath_merged = os.path.join(output_folder,f\"{dataset}_{year}.nc\")\n",
"\n",
"# Überprüfe, ob die zusammengeführte Datei bereits existiert\n",
"if not os.path.isfile(nc_filepath_merged):\n",
" # Liste alle NetCDF-Dateien im Extrakt-Ordner auf\n",
" filename_list = os.listdir(extract_folder)\n",
"\n",
" if not filename_list:\n",
" print(f\"Keine NetCDF-Dateien im Ordner {extract_folder} gefunden.\")\n",
" else:\n",
" try:\n",
" # Öffne und verknüpfe alle NetCDF-Dateien entlang der 'time'-Dimension\n",
" datasets = [xr.open_dataset(os.path.join(extract_folder, f)) for f in filename_list]\n",
" merged_dataset = xr.concat(datasets, dim='time')\n",
" \n",
" # Speichere den zusammengeführten Datensatz in der neuen NetCDF-Datei\n",
" merged_dataset.to_netcdf(nc_filepath_merged)\n",
" print(f\"Neue NetCDF4-Datei erstellt unter {nc_filepath_merged} für das Jahr {year}\")\n",
" \n",
" except Exception as e:\n",
" print(f\"Fehler bei der Dateiverarbeitung: {e}\")\n",
"else:\n",
" print(f\"Zusammengeführte NetCDF-Datei für das Jahr {year} existiert bereits. Überspringe Zusammenführung.\")"
]
},
{
"cell_type": "markdown",
"id": "74b517ae",
"metadata": {},
"source": [
"## 4. Untersuchen der Metadaten der NetCDF4-Datei"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "2dc9c968",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Verfügbare Variablen: ['lake_surface_water_temperature', 'lswt_uncertainty', 'lswt_quality_level', 'lswt_obs_instr', 'lswt_flag_bias_correction', 'lakeid_CCI', 'lakeid_GloboLakes', 'lat', 'lon', 'time']\n"
]
}
],
"source": [
"import netCDF4 as nc\n",
"\n",
"# Definieren Sie den Dateipfad für den zusammengeführten netCDF-Datensatz\n",
"nc_filename = f\"satellite-lake-water-temperature_{year}.nc\"\n",
"nc_filepath = os.path.join(output_folder, nc_filename)\n",
"\n",
"# Öffnen der NetCDF-Datei im Lesemodus\n",
"nc_dataset = nc.Dataset(nc_filepath_merged, mode=\"r\")\n",
"\n",
"# Auflisten aller Variablen im Datensatz\n",
"variables_list = nc_dataset.variables.keys()\n",
"print(f\"Verfügbare Variablen: {list(variables_list)}\")"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "8b6a6922",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
\n",
"
Beschreibung
\n",
"
Bemerkungen
\n",
"
\n",
" \n",
" \n",
"
\n",
"
0
\n",
"
Variablename
\n",
"
lake_surface_water_temperature
\n",
"
\n",
"
\n",
"
1
\n",
"
Datentyp
\n",
"
int16
\n",
"
\n",
"
\n",
"
2
\n",
"
Form
\n",
"
(365, 14, 24)
\n",
"
\n",
"
\n",
"
3
\n",
"
Variableinfo
\n",
"
lake_surface_water_temperature(time, lat, lon)
\n",
"
\n",
"
\n",
"
4
\n",
"
Einheiten
\n",
"
kelvin
\n",
"
\n",
"
\n",
"
5
\n",
"
Langer Name
\n",
"
lake surface skin water temperature
\n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Beschreibung Bemerkungen\n",
"0 Variablename lake_surface_water_temperature\n",
"1 Datentyp int16\n",
"2 Form (365, 14, 24)\n",
"3 Variableinfo lake_surface_water_temperature(time, lat, lon)\n",
"4 Einheiten kelvin\n",
"5 Langer Name lake surface skin water temperature"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import pandas as pd\n",
"\n",
"# Variablennamen aus vorhandenen Variablen definieren und Variablendaten lesen\n",
"variable_name = 'lake_surface_water_temperature'\n",
"variable_data = nc_dataset[variable_name]\n",
"\n",
"# Erstellen einer Zusammenfassung der Hauptvariablen\n",
"summary = {\n",
" \"Variablename\": variable_name,\n",
" \"Datentyp\": variable_data.dtype,\n",
" \"Form\": variable_data.shape,\n",
" \"Variableinfo\": f\"{variable_name}({', '.join(variable_data.dimensions)})\",\n",
" \"Einheiten\": getattr(variable_data, \"units\", \"N/A\"),\n",
" \"Langer Name\": getattr(variable_data, \"long_name\", \"N/A\"),\n",
"}\n",
"\n",
"# Anzeigen der Zusammenfassung des Datensatzes als DataFrame zur besseren Visualisierung\n",
"nc_summary = pd.DataFrame(list(summary.items()), columns=['Beschreibung', 'Bemerkungen'])\n",
"\n",
"# Anzeigen des Zusammenfassungs-DataFrames\n",
"nc_summary"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "0bbc8e3d",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
\n",
"
nc_variablen
\n",
"
einheit
\n",
"
form
\n",
"
\n",
" \n",
" \n",
"
\n",
"
0
\n",
"
lake_surface_water_temperature
\n",
"
kelvin
\n",
"
(365, 14, 24)
\n",
"
\n",
"
\n",
"
1
\n",
"
lswt_uncertainty
\n",
"
kelvin
\n",
"
(365, 14, 24)
\n",
"
\n",
"
\n",
"
2
\n",
"
lswt_quality_level
\n",
"
N/A
\n",
"
(365, 14, 24)
\n",
"
\n",
"
\n",
"
3
\n",
"
lswt_obs_instr
\n",
"
N/A
\n",
"
(365, 14, 24)
\n",
"
\n",
"
\n",
"
4
\n",
"
lswt_flag_bias_correction
\n",
"
N/A
\n",
"
(365, 14, 24)
\n",
"
\n",
"
\n",
"
5
\n",
"
lakeid_CCI
\n",
"
1
\n",
"
(365, 14, 24)
\n",
"
\n",
"
\n",
"
6
\n",
"
lakeid_GloboLakes
\n",
"
1
\n",
"
(365, 14, 24)
\n",
"
\n",
"
\n",
"
7
\n",
"
lat
\n",
"
degrees_north
\n",
"
(14,)
\n",
"
\n",
"
\n",
"
8
\n",
"
lon
\n",
"
degrees_east
\n",
"
(24,)
\n",
"
\n",
"
\n",
"
9
\n",
"
time
\n",
"
seconds since 1970-01-01
\n",
"
(365,)
\n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" nc_variablen einheit form\n",
"0 lake_surface_water_temperature kelvin (365, 14, 24)\n",
"1 lswt_uncertainty kelvin (365, 14, 24)\n",
"2 lswt_quality_level N/A (365, 14, 24)\n",
"3 lswt_obs_instr N/A (365, 14, 24)\n",
"4 lswt_flag_bias_correction N/A (365, 14, 24)\n",
"5 lakeid_CCI 1 (365, 14, 24)\n",
"6 lakeid_GloboLakes 1 (365, 14, 24)\n",
"7 lat degrees_north (14,)\n",
"8 lon degrees_east (24,)\n",
"9 time seconds since 1970-01-01 (365,)"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Drucken Sie eine Zusammenfassung aller Variablen des Datensatzes\n",
"rows = []\n",
"for variable in variables_list:\n",
" try:\n",
" var_obj = nc_dataset.variables[variable]\n",
" unit = getattr(var_obj, 'units', 'N/A')\n",
" shape = var_obj.shape\n",
" rows.append({\n",
" \"nc_variablen\": variable,\n",
" \"einheit\": unit,\n",
" \"form\": shape\n",
" })\n",
" except Exception as e:\n",
" print(f\"Fehler bei der Verarbeitung der Variable {variable}: {e}\")\n",
"\n",
"# Erstelle ein DataFrame\n",
"df = pd.DataFrame(rows)\n",
"df"
]
},
{
"cell_type": "markdown",
"id": "9cd664fe",
"metadata": {},
"source": [
"## 5. Exportieren der Zeitreihe im CSV-Format"
]
},
{
"cell_type": "markdown",
"id": "b6844c20",
"metadata": {},
"source": [
"### 5.1 Definieren Sie eine Funktion zur Berechnung des Tagesdurchschnitts"
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "4a135acc",
"metadata": {},
"outputs": [],
"source": [
"import netCDF4 as nc\n",
"import pandas as pd\n",
"import numpy as np\n",
"\n",
"# Funktion zur Konvertierung von NetCDF-Daten in ein Pandas DataFrame\n",
"def netcdf_to_dataframe(nc_file):\n",
" \"\"\"\n",
" Konvertiert eine NetCDF-Datei mit Daten zur Wassertemperatur der Seeoberfläche (LSWT)\n",
" in ein Pandas DataFrame mit berechneten Statistiken.\n",
"\n",
" Parameter:\n",
" nc_file (str): Pfad zur NetCDF-Datei.\n",
"\n",
" Rückgabe:\n",
" pd.DataFrame: Ein DataFrame mit Zeit, mittlerer Temperatur, Standardabweichung, \n",
" Unsicherheit, mittlerer Qualitätsstufe und Anzahl der Nicht-Null-Pixel.\n",
" \"\"\"\n",
" # Öffne das NetCDF-Dataset im Lesemodus\n",
" with nc.Dataset(nc_file, \"r\") as nc_dataset:\n",
" # Extrahiere und dekodiere die Zeitvariable unter Berücksichtigung des Kalenders und der Einheiten\n",
" time_var = nc_dataset.variables[\"time\"]\n",
" time_units = time_var.units\n",
" time_calendar = getattr(time_var, \"calendar\", \"standard\")\n",
" cftime = nc.num2date(time_var[:], units=time_units, calendar=time_calendar)\n",
" datetime_cftime = [t.strftime(\"%Y-%m-%d %H:%M:%S\") for t in cftime]\n",
"\n",
" # Extrahiere Temperaturdaten und zugehörige Einheiten\n",
" temperature_data = nc_dataset.variables[\"lake_surface_water_temperature\"][:]\n",
" temperature_data_units = nc_dataset.variables[\"lake_surface_water_temperature\"].units\n",
"\n",
" # Berechnen Sie die Durchschnittstemperatur und die Standardabweichung für jeden Zeitschritt.\n",
" # Gemittelt über die räumlichen Dimensionen\n",
" temperature_mean_list = np.nanmean(temperature_data, axis=(1, 2))\n",
" temperature_std_list = np.nanstd(temperature_data, axis=(1, 2))\n",
" \n",
" # Zähle die Anzahl gültiger (nicht-NaN) Pixel für jeden Zeitschritt\n",
" nonzero_count_list = np.count_nonzero(~np.isnan(temperature_data), axis=(1,2))\n",
"\n",
" # Extrahiere Unsicherheitsdaten und deren Einheiten\n",
" lswt_uncertainty = nc_dataset.variables[\"lswt_uncertainty\"][:]\n",
" lswt_uncertainty_units = nc_dataset.variables[\"lswt_uncertainty\"].units\n",
"\n",
" # Berechnen Sie die Unsicherheit der Durchschnittstemperatur\n",
" lswt_uncertainty_squared = np.nanmean(lswt_uncertainty**2, axis=(1, 2))\n",
" lswt_mean_uncertainty = np.sqrt(lswt_uncertainty_squared)\n",
" \n",
" # Extrahiere und berechne den mittleren Qualitätswert für jeden Zeitschritt\n",
" lswt_quality_level = nc_dataset.variables[\"lswt_quality_level\"][:]\n",
" lswt_quality_level_mean_list = np.nanmean(lswt_quality_level, axis=(1, 2))\n",
"\n",
" # Erstelle ein DataFrame mit den berechneten Statistiken\n",
" df = pd.DataFrame(\n",
" {\n",
" \"Time\": datetime_cftime,\n",
" f\"Mittlere Temperatur ({temperature_data_units[0].capitalize()})\": temperature_mean_list,\n",
" \"Standardabweichung\": temperature_std_list,\n",
" f\"Unsicherheit ({lswt_uncertainty_units[0].capitalize()})\": lswt_mean_uncertainty,\n",
" \"Mittlere Qualitätsstufe\": lswt_quality_level_mean_list,\n",
" \"Nicht-Null-Anzahl\":nonzero_count_list,\n",
" }\n",
" )\n",
" return df"
]
},
{
"cell_type": "markdown",
"id": "342fe1a3",
"metadata": {},
"source": [
"### 5.2 Erstellen des DataFrames für Jahresdaten und Export als CSV"
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "281ac465",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Datei existiert bereits unter .\\data\\satellite-lake-water-temperature\\csv\\satellite-lake-water-temperature_daily-mean_2007.csv.\n",
"Überspringen den Export.\n",
"Lesen bestehende CSV-Datei ein...\n"
]
},
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
\n",
"
Time
\n",
"
Mittlere Temperatur (K)
\n",
"
Standardabweichung
\n",
"
Unsicherheit (K)
\n",
"
Mittlere Qualitätsstufe
\n",
"
Nicht-Null-Anzahl
\n",
"
\n",
" \n",
" \n",
"
\n",
"
0
\n",
"
2007-01-02 12:00:00
\n",
"
278.46
\n",
"
0.11
\n",
"
0.43
\n",
"
4.86
\n",
"
7.00
\n",
"
\n",
"
\n",
"
1
\n",
"
2007-01-05 12:00:00
\n",
"
275.98
\n",
"
0.58
\n",
"
0.29
\n",
"
3.60
\n",
"
5.00
\n",
"
\n",
"
\n",
"
2
\n",
"
2007-01-06 12:00:00
\n",
"
278.64
\n",
"
0.00
\n",
"
0.34
\n",
"
4.00
\n",
"
1.00
\n",
"
\n",
"
\n",
"
3
\n",
"
2007-01-11 12:00:00
\n",
"
277.96
\n",
"
1.43
\n",
"
0.18
\n",
"
3.14
\n",
"
7.00
\n",
"
\n",
"
\n",
"
4
\n",
"
2007-01-14 12:00:00
\n",
"
278.68
\n",
"
0.76
\n",
"
0.19
\n",
"
4.30
\n",
"
20.00
\n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Time Mittlere Temperatur (K) Standardabweichung \\\n",
"0 2007-01-02 12:00:00 278.46 0.11 \n",
"1 2007-01-05 12:00:00 275.98 0.58 \n",
"2 2007-01-06 12:00:00 278.64 0.00 \n",
"3 2007-01-11 12:00:00 277.96 1.43 \n",
"4 2007-01-14 12:00:00 278.68 0.76 \n",
"\n",
" Unsicherheit (K) Mittlere Qualitätsstufe Nicht-Null-Anzahl \n",
"0 0.43 4.86 7.00 \n",
"1 0.29 3.60 5.00 \n",
"2 0.34 4.00 1.00 \n",
"3 0.18 3.14 7.00 \n",
"4 0.19 4.30 20.00 "
]
},
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import pandas as pd\n",
"\n",
"# Definieren den CSV-Dateinamen und den Dateipfad für die Ausgabe\n",
"csv_filename = f\"{dataset}_daily-mean_{year}.csv\"\n",
"csv_filepath = os.path.join(csv_folder, csv_filename)\n",
"\n",
"# Exportieren das DataFrame als CSV, falls es noch nicht existiert\n",
"if not os.path.isfile(csv_filepath):\n",
" dataframe = netcdf_to_dataframe(nc_filepath_merged)\n",
" filtered_dataframe = dataframe.dropna().reset_index(drop=True)\n",
"\n",
" filtered_dataframe.to_csv(csv_filepath, sep=\",\", encoding='utf8', index=False)\n",
" print(f\"Gefilterte Daten erfolgreich exportiert nach {csv_filepath}\")\n",
"else:\n",
" print(f\"Datei existiert bereits unter {csv_filepath}.\\nÜberspringen den Export.\")\n",
" print(\"Lesen bestehende CSV-Datei ein...\")\n",
" filtered_dataframe = pd.read_csv(csv_filepath)\n",
"\n",
"# Ändere die Pandas-Anzeigeoptionen\n",
"pd.options.display.float_format = '{:,.2f}'.format\n",
"\n",
"# Zeige das DataFrame an\n",
"filtered_dataframe.head()"
]
},
{
"cell_type": "markdown",
"id": "1e67c307",
"metadata": {},
"source": [
"## 6. Analyse und Visualisierung Optionen"
]
},
{
"cell_type": "markdown",
"id": "4056c789",
"metadata": {},
"source": [
"### 6.1 Visualisierung des Tagesdurchschnitts mit Liniendiagramm"
]
},
{
"cell_type": "markdown",
"id": "ef382804",
"metadata": {},
"source": [
"> Hinweis: Aufgrund der begrenzten täglichen/monatlichen Daten für den Datensatz 2023 funktionieren **Plots** nicht richtig."
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "f757c022",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABK0AAAKYCAYAAACxXgv2AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzsnQWYG9X6xr8ku5u1bt3dS4UWaIsUaXEr7sUdilwcLvyxi14u7q4FijvFi5VSoS2l7u6yvhv9P+9JTvZkNjKTnN2NfL/nyZPd6Mw7ZyZz3vnEVlpa6ieGYRiGYRiGYRiGYRiGSSHsTb0ADMMwDMMwDMMwDMMwDGOETSuGYRiGYRiGYRiGYRgm5WDTimEYhmEYhmEYhmEYhkk52LRiGIZhGIZhGIZhGIZhUg42rRiGYRiGYRiGYRiGYZiUg00rhmEYhmEYhmEYhmEYJuVg04phGIZhGIZhGIZhGIZJOdi0YhiGYRiGYRiGYRiGYVIONq0YhmEYhmEYhmEYhmGYlINNK4ZhmDTiqKOOoubNm4vbZZddRqnC0qVL6ayzzqLevXtTy5YtQ8v4999/04QJE0L/4xZrve6//37xv3ztr7/+mvSyqd+NZWEYJvsYMmRI6DggjzNMOKtWrQo7Xuo4/jIMwzBMsrBpxTAM0wTMnTuXrr32Wtp7772pW7du1KZNG+rTpw8dffTR9MQTT1BpaSmlC1VVVXTSSSfRZ599Rlu3biWfz9fUi8RkAWbMUEYvrLl+YKCpmsobfhN69epFhxxyCP33v/+lHTt2NPWiMo3E+vXr6aWXXqLzzjtPnCNgHLRu3VrcH3PMMfTOO++Q3++P+v6PPvpIvK5Hjx7Utm1bYdiOHz+eli1bFvPCE16D1+I9PXv2pGOPPVZ8VrzjQKwbXyhiGEYHOVo+hWEYhjGFx+OhW2+9lZ577rl6z23ZskXccHX7scceoxdffJEOOuggSnX++usvWrFiRej/0047jQYOHEg2m406deokDLp4nH/++XTYYYfRnnvuKf7/z3/+I+5x4swwDJNtuN1u2rZtm7hNmzZNGBU///wzlZSUNPWiMQ3Mu+++S3fddVe9xzEWMAZw+/TTT4Uh5HA4Qs/DyLr88svp7bffDnvf6tWr6a233qIPPviA3nzzTTr00EPDnv/2229FpHRNTU3ose3bt9PkyZPF7bvvvqNnnnlG/KZbJZH3MAzDGGHTimEYphG54YYb6JVXXgn937FjRzr++OOpVatWNH/+fHEi6vV6xckpzJ/PP/+c9tprL0pFysvLqVmzZrRmzZqwx3Fyq55Im+HEE08M+/+qq67SsoxM5lFWVsYTdw37bbqRrsttleuuu45atGhBtbW14vg/Z84c8fjy5cuF8QBTgskO2rdvLyLtEDEF4+m9994LGUtff/21GA/nnHNO6PUvvPBCmGGF39UBAwbQhx9+SAsXLhTvvfDCC2nq1KnigpKM6rrgggtCn4vX4314Pd4H8Jm77747XXTRReJ//C0vLBlBZNasWbPE37m5uTR69OgG04dhmOyB0wMZhmEaiT///DPMsBo6dKi4go70EJhZr776Kn388cdktwcOzS6Xi/71r3/FTLfDRAYnrTip7dChg4hW+umnn6JO9h9++GE68MADqWvXriL9ZNCgQaI21oIFC2KmrSBlAFdeMaHaZZddRN0qXLHFc5deemnY+2DAyffEA8uKlIR9992X+vbtK9ISsB677babeHzevHkR34cryp988okw9nCSjfd1795dfM6///1voV00fv/9dxo7dix17txZ3HCCHmn9ASLIbrzxRhoxYoQwGDGJGDlyJN1xxx3CWIxXcwzpGIgiQ8RYu3btaL/99qMvv/wy7D3jxo0LvQfrLKmsrBQpIXgceu/cuTP03DXXXBN6j2r4YZJ78cUX0z777CPSTbGNMTnBMl9//fWiZo0RrAei/xDlhnXEe7AtxowZI94zffr0sNd/9dVXdMIJJ4jPx/J16dJFjOUzzjhDjC/jeMXkG5OpI444QmwjfH6/fv3o7LPPFuM/XuoJ0k/vvvtu2nXXXcX3YbzhcePkXX2PsWbRlClTRKoNxjvGCpb54IMPFtGMiGgxYkxvQeQDxha2/7Bhw+jpp58ORU4+9NBDoZQajJPXXnst7rhYvHgxnXnmmUKPpthvrY4VWevIjObG7zdbM8nscscD+iOlCvsb3ouxDcMrHogIxf6HsYztDC2wzf/3v/+JfdEITISrr75aHKvwenwfjkWIYsExaNGiRZQIOJ7DtMdvAo5xKhg3RpA2+OCDD9IBBxwQGh9YDhxXfvzxx4jfgX0KxzBExGK5se9jX4iVciaBWXL66aeLfRjfhfR2pLXDUDG+P9L2RrQPxjLGPd6L48DatWvrfU9DH2cSPTbgNwnmjdznse3xXmhw5513ChMoWbAdsS64kIVjDcbCk08+Se+//37Y6xABJcGx6JFHHgn9f/LJJ4vzDfx+YZtJwxelB9RI72effVYcYwBeg9fiPXgvPkMCzXFBDWC/whg13mB+qVHXeL80xxiGYZKBI60YhmEaCeNkFhNxY8QIJh44UceJPcCkFCfVmDxFqkGBk3+11gmuoOL9OOFEBJcE5slxxx0nJloqmCzgKiquqD7//PNh71HBpA0T60iTpmSAgYOrxZHMONwwEcINBooEV4QxEfnmm2/C3gOjCsYOJp846c7Ly6v3uTjpR2qFOuH5/vvvRYojzBlMdNRlw1VpTPBUMBnFDcuFSWX//v0jrhuK0GN7qhNmPIbJJN4nr0DDyPriiy/E33/88UfotVgeTEQAlhemJ7aB8XX7779/6G8sE2qLqWDiJZd54sSJNGnSJDHJklriM5csWRL2ns2bN4sbdCkqKhJmDICBYzQusH64rVy5UmiGiX9+fr54DjXOMO6MKaKbNm0SUYUwTu67776YTQVgymEfSBTsZ5hwGccK9MUNkQHY37CekcDkcfbs2aH/MSmDKYGxhgmsakJi/4CRgUhDpNtEAhNRpP3KiWJT7bdWx0pjkujxBqbBo48+GvofBsJTTz0ljGo19ckI6gfddNNNof1NgnGLG44b0AoGBUAaN45JGN8qGzZsEDfsq2hKEe3YYAYsr3H7yO+XYDth269bt67ecuCYghv2rQceeCBsGxv3KUTVwKiUx5dI4BiEz4KBqwITBGYUbtgXMIajRdree++9Yceu6upqcRz4559/xPLI40ZjHWesHhugEwwt428C9kfcoAF+q5M1alSzSAXHelwUgqELVFMN0U0bN24M/Y+aVhK8B8sFQwrgHusu/5bgNXit+hnSKMOYwncMHz486nK/8cYboYsrSAu88sorE1h7hmGY+rBpxTAM00iokwSkf0QLm1dNK4CT/EimFa4eIzIG0VgVFRUiEgFXmzG5wMQZhhaubuPqKIwSOfGFMYOTYkQv/PDDD2KChfchggVRJJHqSMnaKlhmpCtikoB1QIoATmTVYq0ybcBMChcmAzBtZDQFJiE4IUeNDUzIMIHAZFK9Uo7ICdWwwpVxXOXG98HkM5pZKohmwdV3RFphgoPvAfhOnHCjOD7AxAhXjTGpAlg+fAe0xUk8tMSEGMYEtk+kSRomYtAIkyt8zuuvvy62BaIRUGxfNa1UkwJmEaIf1MkdwMQbk0osKyZPEvX92N7Y7pgs47uRnoEJNiavSOOEUYIICzm+MMmShhW0x/pgTGEZYBriO1Vefvnl0N9IETn88MPFRB+T5hkzZtSLLkEkj5xI4io+CvYjug0mDcxC6HnLLbeIaJVoabDYbzBRgkmAySLWEa+NNu6ArI2G9VQnpTCL8F6sH2oEYb/B52MZsE0iAcMK0Uf4fnyf1AvFsQH2TUQrYftikgwef/zxqKYVPg8aIwKvKfZbjC2rYwXfGWtfVzXXQazljsbMmTNFLUDV4EEkJgwwqXEkoCMiWaSRDYMWxgQMEowRLAf2t0suuSQU+QQjRBpW0A5Rc9AIpgGMNuO+awVEFEYC0UbqmMJ+h/EhDSscg7C+MExg6sAclZE0iFBCdJT8X/0twvdhP8brpXkeCWgrDSsYEjA0EG2EYyUMThgo0AePwQCLBHTBcQP7IY49OA7I4x6+G8eHxjrOJHJsgFEsDSt8/imnnCJ+w7Bc+O0xRqXqBscX1ezeY489wn5vVBB9He1/XPCS+wP+NvMe+R3RTCtsH5QGkCCtEZF8DMMwOmDTimEYppGQE1oZ/h8N43Pq1VMVTDJh0CAVAuCEG5FB8uo3JhBINcFrZBoRJjYwahAFADC5gOmBiBFc2UdKBK5IRwJXviO1isdVcXUia6UeFYrNYkKByTAmIlhuTE5xwisnJrjHVWyYU4gqUyPWMOHCleLi4uLQY3httKgZfAZSZmSqBNYd0U8AUUVqdI00rJCegmK08qo+Jkg4GYepgGWDvkceeWS978LEDpESmDACvF+e1Kvfhc+CISEnwZgoIWpATizllXU5Eca9TMOB8QDDQoKoEkweMXnCRBATb0xiEfElI9p++eUX8RqMHzX6ZNSoUSIVSgUTGzUNUp34w7SREVhqOpCMcMMEB+aKBBM+NSoMBgzGItYFqS/RTCsYjDAUZdqslXEH80iCSbuaFoP1Pffcc0OfhSgdNcpAglQrpCpBLxgzMJUlmKBjG2O/ghGFtE0AYytaDaZU2W+tjBUYwtA3mX3dKtGWOxowpuR+Ab2wzbDvGjU2AkNCGlbQFNtTjjVsaxh70vDGmB48eHDYfoBIJ0QQqcAoi5RSmCgFBQUiggnHLwmi4NQISeyPch2RVgmjVRqeSDGTphX2JQm60cHUcTqdoe0J89UI9MF4kSCSFdGGElwIuP3220PfBfPfuL9KkwXjGvsAxhUuBsAoBfgNkKZVYxxnEjk2qMsFreVFDklDdniEKQRTW0YDIjURxne07zYee9TfSGxPGRGlpnTGeg+QEV6RwHFLjQjlupQMw+iETSuGYZg0BXVb5MRXTrCQ/iBTBhDRgcmvvJoNYLTgynU0EHUQDUQj6AYGEk5ujcXcjSCqCRM2XGVXU3hgEhhPrNWJnZFTTz017MQck1ppWqk1o1TNcCXamJZj1CySaYVJozSs5HdJ1O+CuYVoHRnFge9GVBciRwAiaWBIYHvCSFOjJDC5UieHSPm6+eabI9bbMhpRqCmDsYAJKx7DxA+mDNLBsKwwBGFgqKkuGHPyij6MNUwmYaTA2EG0kZpKpmoozadoxKo5gwl4pAlwPBARoaYLIXoCt0hgTMFIRISNEZgSmGQDdX+T6ySj7IyRTtjGkUyrVNlvrY6Vxsbq8UYWfwaIqFH3N6PG0bRD9A8ipqKB18K0gvGB/RYTftQixNjBPoBacPhumF/xIsPMFGLH8iCdGfs9onoQ0SRTpY37jDSlpMmF/VNGCGGfxf4As0I1uhAtJQ0reXyMZFrhPeo4QQ0t3CIBYwPHTBhZRpDWLfcl3GM/kKaVekxs6ONMoscGLJc0t+655x5xwQTribGGCCQsm9UmJGaAoYy6W7KGFY4riHpT09mNGOuLmalXlsh7JGqkqtwHGIZhdMGmFcMwTCMB4wOpFCBS4VmJ0cCJNmHElVYVnCzjarCM6ELUhtWrv8YaLWpqSqQolGRAjQyktxjrg0RCXuE2rovRRIgHCv+qqBM29QRdh2ZmvwsgMkCaVjCl0DEMkRo5OTkisgtpLNAAUTHR6lnB7EAKU6zC/UY9keKC6C9ETsg0KDX1EIYgIhJkBASiKTCGMXlC+gyiT9QC4jDfYIYg0k2HhiDS5NcMmARbmXRFWwZ1/5MT7kjPYVupRNsOqbDfJjJWEsGof6wGCckeb6RuZjRWsaKzNG4QMQQjGRFW2A+wv8ouf3L5Yf4kMnGHYSmPazDuYGDDvMJ2UFOl1eXGfmqMLlVNM2wH6GPc3kadohltViOIMB4j7bexjonqsjX0cSbRYwMMNNRpQiQutge2hWoeYv2wXIgg0wXOFWAmShMPRhW+Q00NBMb9BbpF+x8XAWCMAmm+xnuPHNeRgLGqjn9EhDEMw+iETSuGYZhGAldhpWmFE22c6CGSxQg6CKrg6m4k5BVqNRpDDd9H6hhQIweQooaaUNGIVocqWrpdMuAqtWpYYQKImi1YbhgnkWrkGKMgkCZiPHmPhdF0wAl7JNTvwQQEHauiEa1uh9nvMppPmJzIWluI1MKyYB1hZmESp04O1EkxTC858cN3obg0Omlh2+HzohX3hSF17LHHisgupJuhlhXSwhCBhkkLJmmoKYOJMcYHasGghgsMNERUIEUS9WiwLX/77TdhciF1yLitMO5kiqUVEh17cvxLEA0XbV8CalRcrO2oYjSqzJAK+22iY8UMalScTLGVIA2xoba5ur3jaawCneXrMT4iRU1K1GMS0heRQob9AMcrrBtS7XAPcwuRXcY6Q4mAqBXZZRH7GgwXGA7q+MB+CpNb1Q21mSTYxrJOmopRJ/U9KsZ9GcfDWMaM0Zyyekxs6ONMMscGRFjBTIRZhfplWDb8luEiDNLjECmH1FQdIMILEXSyRAAiulBTEWmdRhABqIJzDbU+mtrVD58jDUNEB8qGB/L8JNJ7QLSmDGqUFSJO1SLwDMMwOmDTimEYppHABAf1NiQocoyuRmoKESYnas0YmQ4RCUTcwLSRV+XxPjX9RdY6UidaqH+DyQZqRhlB6l2kjnsNhXESiagrOZkwGncSpGDAKJApgigODEOlsLAw9BpMHnA1OpbZEA9oJtPzMGGAsWPsCIVlwGTFimkWDUwcUBMJy46JJWoUATmRwj1MK0RvyHXHVW91EqHqiUkfUqKkgRBNT7wHE15MMpHyJOu9wFSVRXgxSUR6ECbPKNaMZUWEFm4SRIDItBlpqhlNR0QCRKorhLpNamqQWYzbF8upjgNM4FFzSqYBYV1hJBjfhwgUmIE6oyNikQr7bSJjxYzmRkMAESowQTHJRmQKago1FBifsssjUgVhJsgUQaPGKtBZFiBHJBaO00YTEOYbjD65TbCfInoLkUm48CAvPmDsSwMaEbPQOdkIVTXtEUiz0bh/Ib1N7l9yeVVDQ24n7L8yRRD1u2D8SAMD6YeRwHvUrnX4/Eg1i2CCIV0vVoq2GRr6OJPosQGmDgxD3LAvyv0Rdc9QjF9dLoD9XDWOMM7MRt/h3ABRtvLCDs4DUF8r2njC+Je/IXLbSvMIJiqMPolqzMKslqYVXqOOWXUM4fcP3xFpW8GslaDxSEOkSDIMk92wacUwDNNI4OQadSlQA0VORlD3CDVzcJKIkz90pZJXwzERxdXkaPV8MAlDNzmkDsguZOrEEakMAK9BhzBZ2BxXyVH3A4YYJkC4mgpDBFeJkSoWrXuVbjApUUHNFkwCEJ0AHSKBq+qYVCIyRE4QoOtRRx0l1hkTVUwMsK4y/SERMFlA4WOYBTBwkI4CPTGBQkQDPh8GIyY1iEiKVQfHLJjMIO1DTUOShiXukSKopkBhmdRIBVVPvA7RMtAGJglqh0UCUSGo1YJ6SZjYYtIDU1CdhKhGxG233SbMPEzSMTGFcQZTD5Mp42sxKUT9HZnWg+gEfC5MGYxpjDdEK0BL1FaKFekQCSyrCiaq2J/w2eiiBkMBaSpyAovJNHSEyYmxgckZth0eR5qfTIFsaFJhv01krJjV3Fh7C+uB2mvYV2FgNRSI0kSTBqQ64RiKiTmiVIwaG7niiitEtz28D8uHcQidkTqHTm04LqOLJvZ7WTcK/1900UXitUiDgy74ThgNEhy/UVvKKjCmZU0rfI+MslLNI6mrakAhxRe/KVgWrI9aFBtGgqqTLJqO9cX+D+MC66kuvwq2Lz5DdouEsQkDB/s3IjARoYXvhoEq9UuGxjjOJHJsgPmJ5gA49qLGFlL+YSqp3X6NUVyJAH1RZF0alLLTp2yQIIG5KgvGwyhCYXhZCw4RWXg/jhdYPtkYAJ+FOokS/I1zEox11M7CWDjxxBNF9KBqYOOzI5lRqhGN7STNO4ZhGJ2wacUwDNOIoDsbruaiJoYsMI5uS0YwMYExE62jmkxZwKRDbfMOcKL+yCOPhE6eYUIgwgvmGE7gUVfmww8/pKYGk0pECiElDaj1QTBBV6PSVJBGiPWQKXT4G23cdYIUB7Rdh3mFk32YSGob9oYAERrStAIwpOQESxoDat0XNaVQRqphLMkr7Zi4SfMplp4yDUXtaKiCCaiajoJohWimItJyUCtJgogxjDtENGDZEZmGmw6gCSaUMnUGE3XcACaVMFBgxmAyjv0BIKJARhU0FSgqDXO1KffbRMeKGc3xGhgAsmEADA05+T300END+61uEPGIVFaZqoSoKakxImWwHJGKzmMfe+ihh4ShgShG1BAyczzBeIaphFskcOxIxLSCOR0JREOhk54E4wMmDsYH0uhgmhlNDWlKqEXakdaIbSYL0MOckc0oYJyrJpkKTAsYZCgADmBSGaPAdNLQx5lEjw3YD2HsRjN3ddRzgmGkHuthLCMt0QgiZKVpBWCkYpvI/dd4vIBuOK9QzWdEUOExmJkwSvHdxm6YOCZEil7D+QvMsWTHPMMwTDyst+NhGIZhEgYTDUyQMDG44IILxFVQpAficaS0YdJw9913izSXgw46KOZnwfDBiTMK9eLqME4WES2Bk0hj1AjSZDCJxGfjNXg9rpriuxFhg65OmAAlU8vGKjDvcGUfE2iYdJiUoT4UosswgYwGTrxh7iCqAlfGcbUbn4WrztAEaR7GlKVEgK6IPEEkBj4XEQWyoDMm5kiPwQTcajH4aBjTRhDBIaMqsG7GmiVG0wqvnTRpkjCZ8HqMB0S9YCIbrSYXxgUmKHgP/oZhgnXE+IBhig5hMjIQYJ2hL4wXTHYQTYLthlRCfAfGo5ouiWgVPIaJIZYXV+Lx+UjPwfoh2ggTpkTao+N7MdYRgRCtppNMw8V2wndhW+F9GC9YfrwXUSfRJscNAaJjoAnqiDXVfpvIWLGiOVLVsGw4puE9WFZEZODY15AgEujRRx8Vx1WMTRhsmMjDwIhVJwuvwTEZBgA0x/EDx2SYcDDjEMWkmlMwuv7v//5PRDvB4FaP4YgOgullnPhbBaY1lhnRdojQxfJBdxU8h5SuW265RVzEwDEKy4H1xvELkUHGLn8Y+zARsc/JfRhjEsur1iYyAlP1+eefF9sfaWeIOpX7P8wTROg88MADWsz9xjrOWD02QFOkKI4ePVqssxwn0BtjAYaeaqapDRKwv2B7NSQYMxh7iBKGDjheQDtEqyECCmMYxrERLDuOM3gNXov34L34DBz/8ZmR6o/hcZl2i2MI9iOGYZiGwFZaWmq+fQbDMAzDMAxjCaSvypoymHTrjgxkGCb1QKQfjDGAbpNqmibDMAxjHo60YhiGYRiGYRiG0YiMzkOkrhqBxTAMw1iDTSuGYRiGYRiGYRhNoMYYCrnLWpZII2QYhmESg4+gDMMwDMMwDMMwmkBNrTVr1jT1YjAMw2QEKRVphSKJ6DiDIoC4oQ3vd999F3oercevu+46UYgRRRJRMBDdYFTwA4GCpCiKiHa0aJuLbjCxQGtbdMXAd6KwInLO0SJZBS3YUfAXRTlRKNjY9YdhGIZhGCYS6NaGDmC4cT0rhmEYhmGYNDWt0InkzjvvpJ9//pkmT54sulagTe+CBQvE8+iOgm43r7/+ujgBRMtlGFdqKO4pp5wi2tGiG8hzzz0n2r7G6+CCbhdo8frJJ5/QxIkTRQcNtWVtWVmZaKXbtWtXsWzo4oMOKWpHJYZhGIZhGIZhGIZhGCaLugeiBS1aGKM1NCKnEI113HHHiecWL14s2uF+//334h5RWTCtFi1aJCKiAFrvwghbtmyZaOFqBK9F6/KffvpJtHsG+Dy0nYZZ1rFjR/GdWIYlS5aEPgPdQGCczZgxo1H1YBiGYRiGYRiGYRiGyQZStqYVoqY+/vhjqqqqEqbS7Nmzye120+jRo0Ov6devn4h+mjZtmjCtcI8OHdKwAgcddBBde+21woAaOnRove/Be5o3bx4yrAC+w263C0Nq7NixNH36dBo1alSY6YXPRYrgjh07qGXLlhHXoba2VtwkPp9PvL5Vq1Zks9m06MQwDMMwDMMwDMMwDJNK+P1+UXYJgUDwVzLGtJo3bx4dcsghon5VcXExTZgwgQYMGEBz584VplGLFi3CXt+2bVvatGmT+Bv3+F9FGljG2leSSO9Bhw8YUernIuIr2udGM60eeeQRkUbIMAzDMAzDMAzDMAyTbcyfP1+UgsoY06pv377066+/ijpSn376KV166aX01VdfUTqCCC8UdZdgnRAJtnLlSiopKRGPIeIKriOisOBESuTjiDhTifY4HsNzkR4H+Hwzj6PbCZZDfRyfidRIRLYZHVK8Ptqyp/I6RVv2xlon1F1Damr//v3F92XCOjXkdkKUJerOSb0yYZ2aejvhHmNwl112CX1vuq9TvGXXvU5o8iH3Y1zsyIR1aurthNcg9R8Xq4wRyem6TrEeb6h1kjpi/zaSrusUa9kbep0AIvZxHiR/g9J9nZp6O8nfIBw/c3NzM2KdjMvI50bpt5343EjPOkkd8VuO/TsT1sm4jHxuZDe1TvA/0EQPwUjJkHKmFaKpULsK7LbbbvTXX3+JTjsnnHCCmOjv3LkzLNpqy5Yt1L59e/E37vF6FRlhpaYMquA9+AwVTESQxqd+rvE18T4XOJ1OcTOCyCxpWqULbdq0aepFyDhYU2sgRZfRC4/B5GEN9cOa6oF11Au6WzN64TGaPHxupB8el3pgHfXSJk31lIZ6sqWRUqp7YCTg+MGsGjZsmHBq0b1PguifNWvWiJpXAPdIL1QNJhRYh0EEZzISeA9aUM+aNSv0GL4D3zt8+HDxP+pl/f777+KKhvq5iAqLlhqYScBxhUtqdGqZxGFNrcF66Yc1TR7WUD+sqR5YR72wnvphTZOHNdQPa6oH1lEvftYztUwrdPmDObRq1SphPuH/3377jU4++WRRLP2ss86iW2+9lX755RdhMl1++eXCdIKpBA488EBhTl188cWiBha6AN5zzz104YUXhiKeZs6cKcyo9evXi/8RUnvwwQfTVVddJZ6bOnUq3XDDDXTiiSeKgmEA348IsCuuuEKEh3/44Yf03HPPhaX+ZTIw8JYvXx4xXJ5JDNbUGqyXfljT5GEN9cOa6oF11AvrqR/WNHlYQ/2wpnpgHfXiYz1TKz0QEVKoYbVx40YRHYX6Tx999JEwo8D9998vciVhXiH6Co+j2LkafjZx4kRRSwrF3AsLC+n0008XRpcE3QgRoaVGTb344ovCqDrmmGPE5+P+wQcfDD0PwwydDK+//no64IADqHXr1nTjjTfSeeed12jaMAzDMAzDMAzDMAzDZBMpZVo9/fTTMZ/Pz8+nhx9+WNyi0a1bN/rggw+iPr/ffvuJdECVVq1a0csvvxzzuwcPHkyTJk2ihgaFy1RDLRXAMiEcER0d1QKkTOKwptbIVr0Q4ZlMe1iGYRiGYRiGYZh0JqVMq2wGE3JEmKHQfCouG4wCpG0mW0SNCcCaWiNb9YJh1bNnT2FeNQS4EMAkB2uoH9ZUD6yjXlhP/bCmycMa6oc11QPrqJf8LNfTVlpamr0VvRoZFFDr2rWriPQydg/csGGDMKzQjRBpjdk0MWcYpj7IW0ftPTSgQAQpHxMYhmEYhmEYhkkn/wOlltA8z+h/WIEjrVIk9UkaVqiXlYpRLlhGRLrwxFkPrKk1slWvtm3bCuPK4/EI80q3KbZjxw7RAZVTEBODNdQPa6oH1lEvrKd+WNPkYQ31w5rqgXXUi4/1TK3ugdmKrGGFCKtUBYXvGb2wptbIRr1kWiAMu4YwAnHVI5vb5yYLa6gf1lQPrKNeWE/9sKbJwxrqhzXVA+uoFz/ryaZVKpFNESQMw8SHjwkMwzAMwzAMw2QzbFoxDMMwDMMwDMMwDMMwKQebVowpdOTP9ujRgx577DFqCBAuefHFF1OrVq1EdMrs2bNp9OjR9K9//Sv0GtQNw3OTJ0+m1157jVq0aGHpO84991w67rjjtC1ztuYkJwrrpZ9mzZo19SKkPayhflhTPbCOemE99cOaJg9rqB/WVA+so16aZbmePAtk4gKjB202Y6UqIc/2/PPPp06dOok6PN27d6err76atm3b1ijLOGnSJGFEffHFF6IT4+DBg+u9Bp0L8Nw+++xDp556Ki1evJhSWdN0ZeXKlSHjMBv0akgztiFBUfvevXuLeyYxWEP9sKZ6YB31wnrqhzVNHtZQP6ypHlhHvThYTzatMpFFm7z0zXyPuNcVxYRi8dGKvy1fvpyGDx9OS5YsoXfeeYeWLl1Kzz33HP3www+099570/bt26mhi3MvW7aMOnbsKAypDh06UE5O/caYMDzwHEy1goIC0a2xqYinabrSUMXSG1svfA869mVyoXl0Itm4caO4ZxKDNdQPa6oH1lEvrKd+WNPkYQ31w5rqgXXUi4/1ZNMqk9hW6aOTXqii0Y9W0blvVIt7/I/HdXU4jMT48eOFEfTtt9/SAQccQN26daMjjjiCvv/+e1q3bh3deuutodeWl5fT6aefTkVFRdS5c2d6+umnwz4LKXwXXnghtW3blkpKSujAAw+kOXPmhJ6/8847adiwYfTSSy9Rz549RfQN0vauvPJKWr16tTCmEPkSiVdffZX22GMPKi4uFubVuHHjaPPmzWGvmTdvHh199NHiuxGGud9++wlDTOV///ufMMhat24t1l3Vpra2lq6//nqxbljHPffcU6QjSmRa4jfffENDhgwR33H44YeLCDDwzz//iDS4LVu2iP9h+OH/0047LfQZ99xzD+27776hrnIXXHCB0AJGXP/+/enxxx8PW158/8iRI8Xy4LtHjRpFq1atEs9B2zFjxojlwDpDnxkzZoTe+9tvvwkN8Nldu3alq666iiorK0PPQ+v//Oc/dPbZZ4v3I0UTywJ22203sT2QpinBdttll13EdhswYAA988wz9SK03nvvvdB3jhgxQkTETZ8+XWiJ5cTYkvqoaZt33XVXaNxceumlYSYQDvL3339/SKehQ4fSBx98EKYRvvvrr78WGjidTrHu2PbHHnsstW/fXowbLA/GtQTrBi2vueYa8X4ZCSbHqQqisdSxKZf73nvvFRGK2HaNCYw5/ABmmnHamLCG+mFN9cA66oX11A9rmjysoX5YUz2wjnrxs55sWqU6VS5/1FuNO3zgXvhWNU1dER5dhf8vequaqg2vjfaZVoGpAgPm8ssvF2aAijSGJk6cGNrJHnroIWEYzJo1i26++WaRQvjdd9+F3nPyyScLIwnmwcyZM2n33Xengw46KCxaC5FcH374IX300UciBQ0mzd13301dunQR5g8MjkjAXLrvvvvo77//po8//phWrFghjAMJDLb9999fGBY//vij+H6kPKoRNz/99JMwMnD/+uuvCxMKN8kVV1xBf/zxB7377rvie7A+MKUQhRbSvqqKHn74YWHg/Pzzz8Jsg9EFBg0aJMwwPA5+/fXXsP8B/pZGEMwYrPf7779P8+fPp9tvv53+/e9/C+MHYNlhjMBMxPJg2WAsSXMF2wfvh2ZYX2yT3Nxc8RzWE8t+4oknivdiO8LIwToaTTy5Tf/v//6Ppk2bJh6HuYPtge0EJkyYIJYPJs2CBQvEtsDroaPKHXfcQbfddhv99ddfImLujDPOoJtuukmMnV9++UVsf3yOCqL68JkwnxDth++EiSWBYfXGG2+ICEAYkzCZzjzzzDBdAdb/gQceEJ+16667UkVFBR155JHi87F+0GPs2LFimwF8D/TD+MO6SvPRLPjcRYsWiX0Aqa0MwzAMwzAMwzBMHfVzqJiUovftFVGfO6i/g946r1D8jVTAqSvqR1R5/UR/rPDR8c9V0aQri0KPj3iwkrZX1jepNjxgrcgbzBgYUoieiQQe37FjRygyBlE+MAZAv3796Pfff6dHH32UDjnkEGGIwPCAaQXjSBoin3zyiYiKgdkCEEEDAwJRNRJE4CDPF0ZZNOT7Qa9eveiJJ54QkTMwJhBFg6gv1L2C4SSNGyyjSsuWLempp54S34VIoaOOOkoYDxdddJEwMhDNhXtEzgCYUai3hcdh0kjz7NlnnxWvgdEHEwimB4CZBOMM5stJJ50k7s877zxhcC1cuFDkM0+ZMoVuvPFG8Xosp2rOIJIIxhRMq1NOOYXKysqotLRURI/hvXKbSLCsN9xwg1gX0Ldv3zCjB6aWLGaP56AZDDAsP6KlAKLhrrvuutD7ZL41zDZ1e8CMgll3wgknhJYVRtvzzz9P55xzTuh10Oywww4Tf8PURGQeDDCkmkIvRJapRiFApN8rr7xChYWFwviDnlgvRIFJs1J+htz+GG/4bqyPBO/DWJSgsD8MOQk+D4bnZ599JrYbnsf6YvzFGnvRQPQbti2Wn2EYhmEYhmEYhgmHTasMYeW22FFSNdGz+0wRr/Cb2XBFaRqo/8si1khVg4EEs0Oluro6LEUPRd5Vw8osiCRC2ha+B0aazAuGcTNw4EARtYW0NGlYRQKGiKoF0gTnzp0r/sY90vWMRhdSBtV1grECA0mmr+Ez1DRFmCgvvPCC+BuRQDBckCIHAwsRZzBhYP5JYLbBsMF6QCt8rkxNg6mCaDKYQDBjDj74YGFm4TvBtddeK9Ix33zzTfEcIsOkuQWdEGGFCCl1O0M3RKlJ8wv1zOKBlEJsQxhOMPgkiASDUaiCCCcJ0vIAUiml7njMmNYJYwm6quMKYwkNAnCP6DbVjALQCSmMKsZ1wXsxZr788ksRRYXlhcYy0ipZsF5NZVjBIJXdNpnEYA31w5rqgXXUC+upH9Y0eVhD/bCmemAd9WJjPdm0SnWW3V0c9Tm7Mm57tI49iJ84NRAVI5l+U13UVTywg8jIJyN9+vQRzyOd6vjjj6/3PB5HdJIZkwkGAcwUtQaUBLWY1OgUq8A0gXGDG0wYLA+MB/wvzSNjemMkjIYW1l2aX1h+GCswx4wmHyK51M9QNcXfqumH1D9ENyGKDZFIqF+FKCvoArMNxoo0aBAVhsgkRDDBqEHED9Lo/vzzz9DnIcoLtagQ8YUUP6TeIR1tr732EoYM0u9gyiAlE9FQ+ExsS6zPJZdcIt5rBHXLrGwPfBZ48cUXRW0qFaNWqsby4AxjR9XLSiFC+d1YR9QaUzGOa+O6QFtohYg/jHWMEUTAxSuajjpkRiM3Ul24RMayLrCM6nZkrMMa6oc11QPrqBfWUz+safKwhvphTfXAOurFznqyaZXqFOaZc1T7t3fQqF4OmrrSS15lPu+wE+3V00G7dnYk9LkAk29M0mEcGB1eRBAhggUFtVEnSDV+UDAOBhGKdMv3TZ06Nez9+F9G7KB+Fd6DOkbRiqknCkyfbdu2iXpFKCgO1ILjMsIH9ZVgLsSKtooGonYQaYUoIERsmdU0UvQNjD4UXEfEFAwvGFkPPvigMK3UwuZIr0THRNQUkxgLx8tlw+2WW24R5tbbb78tTCuAyDDcsP2QigeTC6YVtgdMM5g1VpDrBC0kiI5COiQ6TSLl0CrQCxFr0aKSEBWGCCg5/jCuoBu2Na5MwJyCSammApoB+iJSTRqyMMBQMN64vuq6ApiismCiHPuI5EslYPytXbtW1OTCjyFjHdZQP6ypHlhHvbCe+mFNk4c11A9rqgfWUS8+1pMLsWcSz4/LFwaVCv5//ozwKKtEME7KVVDjCYYCopZQKBspWYjqgZmFyBYU3lZNgP/+978i3Q1pbSggjrpFAOlpMFRQOBydCGEOoH4Tug8aDSarwJ2GufDkk08K4wQ1iVCfSAU1ilADCp368H2IdELaHAplmwHGDwwZmHQo0I0UOtToQm0oRPmY1VTWtYLhJw0qGGrQGPWzVOMFdaawrCiGD01R2FwtRI9lgFGFOlfocgddsV4wCmHyYJ0RwYXnsG3wXmkiovg59MdrYLjgfZ9++mm9QuxG2rVrJ8wjjIFNmzaJmloAtbegBepiYVmRTgmD7JFHHkl6DMIAROohTLavvvpKRIxhOXFgR/QZIqZgysGUhKmHIu8YC8Yi8Eagryz4D2MMUWnGKC8YrBj3KOS/detW8Ri2G+q4Yazj+zDWEcmWSsBQQ7ppNnciSRbWUD+sqR5YR72wnvphTZOHNdQPa6oH1lEvftaTTatMonWRnT64qJAmX1NIr51dIO7xPx5vSKRxguLWqJeEmkgoej5mzBhhliDSRYKC3Xgton4QSQTDQhbdhlkDwwGGDYqPwwSCgQRDRdY2ShREvqB4N0wy1K9CxBVSvoxRY+gaiGgaGEN77LGHSGezEnUFEwamFdazf//+woCDEWQ1pBPfD5NGmlYwX6ALNFLrWSF9D4XNTz31VJF2h2gyNeoKaYSIMkMHQOiJ7TJ+/HjxPqTl4fVYXjyHbXfEEUeECrvDKENNLRhMiBzDNkPXPllkPhqIlIMxhSLneO2xxx4rHkftLBQdh0aIJsM6YpugIHuyoMMkxiE0ghbHHHOMSH2UwKCEoQfTDKYcugDCSIz33RifiHpDNBu6BmKsIgJNBcXbYbBi3Ms0WHwHog9hVqHeFsxL2SGSYRiGYRiGYRiGMYettLQ0ey27RgZRPEhXQuRJSUlJ6PGamhoREYMJtOzIlkrA1ZWpV9lcAE4nrKk+vZC+t3PnTtFlMtNoyGMDTFFEu6lF7hlrsIb6YU31wDrqhfXUD2uaPKyhflhTPbCOevGmsZ7wP9B0C5lYqv9hFY60YkyRSI0nJjasqTVYL73A/OvQoQObpknAGuqHNdUD66gX1lM/rGnysIb6YU31wDrqxcZ6ciF2Jj7YQdgw0Atrag3WSz9IOcUPIJM4rKF+WFM9sI56YT31w5omD2uoH9ZUD6yjXuysJ0daMeZSs5CmlM3F33TDmurTC3WxMjE1sDFCjVEkPlaBeyY2rKF+WFM9sI56YT31w5omD2uoH9ZUD6yjXrysJ5tWjDmMHdOY5GFNrcF66ae8vLypFyHtYQ31w5rqgXXUC+upH9Y0eVhD/bCmemAd9VKe5XqyacUwDMMwDMMwDMMwDMOkHGxapRAcScIwjAqnjzIMwzAMwzAMk81wIfYUIC8vTxRYW79+PbVt21b8n0rdATBxhqGGmkKptFzpDGtqjWzUC+u8ZcuWBitCj8/t2rVr1ujZELCG+mFN9cA66oX11A9rmjysoX5YUz2wjnqxsZ5kKy0t5Uv5jURZWZkYcKWlpVRSUhL2nMvlog0bNlBVVVWTLR/DMKkFfpy6dOlCxcXFTb0oDMMwDMMwDMMwlvyP5s2b05o1a+r5H1bgSKsUAdFV3bp1I4/Hk3KdAbA8q1atou7du5PD4WjqxckIWFNrZKteiLBqqPWFpkuWLKG+fftmlaY6YQ31w5rqgXXUC+upH9Y0eVhD/bCmemAd9eJlPdm0SiVkGlBDpAIlu6MgEiw/Pz9rdxTdsKbWYL0aBqRbMsnBGuqHNdUD66gX1lM/rGnysIb6YU31wDrqpSbL9eRC7AzDMAzDMAzDMAzDMEzKwaYVwzAMwzAMwzAMwzAMk3KwacXEBZ0Ne/XqJe4ZPbCm1mC99MOaJg9rqB/WVA+so15YT/2wpsnDGuqHNdUD66gXO+vJ3QNTpXsgwzAMwzAMwzAMwzBMJlCmqXtg9tp1jKUi2HPnzk25robpDGtqDdZLP6xp8rCG+mFN9cA66oX11A9rmjysoX5YUz2wjnrxsp5sWjHmyOadpKFgTa3BeumHNU0e1lA/rKkeWEe9sJ76YU2ThzXUD2uqB9ZRL94s15NNK4ZhGIZhGIZhGIZhGCblYNOKYRiGYRiGYRiGYRiGSTm4EHsjkq6F2P1+P9XU1FB+fj7ZbLamXpyMgDW1BuulH9Y0eVhD/bCmemAd9cJ66oc1TR7WUD+sqR5YR73401hPLsTONCp5eXlNvQgZB2tqDdZLP6xp8rCG+mFN9cA66oX11A9rmjysoX5YUz2wjnrJy3I92bRi4uLz+UTHAtwzemBNrcF66Yc1TR7WUD+sqR5YR72wnvphTZOHNdQPa6oH1lEvPtaTTSuGYRiGYRiGYRiGYRgm9WDTimEYhmEYhmEYhmEYhkk52LRiGIZhGIZhGIZhGIZhUg7uHtiIpHP3QOTQ2u32tOtYkKqwptZgvfTDmiYPa6gf1lQPrKNeWE/9sKbJwxrqhzXVA+uoF38a68ndA5lGxeVyNfUiZBysqTVYL/2wpsnDGuqHNdUD66gX1lM/rGnysIb6YU31wDrqxZXlerJpxcQFzu6iRYuyumOBblhTa7Be+mFNk4c11A9rqgfWUS+sp35Y0+RhDfXDmuqBddSLj/Vk04phGIZhGIZhGIZhGIZJPdi0YhiGYRiGYRiGYRiGYVKOnKZeACY9cDgcTb0IGQdrag3WSz+safKwhvphTfWQKTou2uSlldv81KO1jfq3b7p1yhQ9UwnWNHlYQ/2wpnpgHfXiyHI9uXtgI5Ku3QMZhmEYhmEak22VPrpkQg39vtwbemxULwc9Py6fWhdxogDDMAzDpDrcPZBp1DabGHC4Z/TAmlqD9dIPa5o8rKF+WFM9ZIKOMKymrqwzrAD+v+TtmkZflkzQM9VgTZOHNdQPa6oH1lEvftaTTSsmPuhUsHz58qzuWKAb1tQarJd+WNPkYQ31w5pmj45I+/tmvkfcR3oOEVZew+Lj/9+XeSO+J9v1TDdY0+RhDfXDmuqBddSLj/XkmlYMwzAMwzBM6qT9oYZVLPB8//YNvqgMwzAMw6QAHGnFMAzDMAzDpEzaH4quxyLe8wzDMAzDZA5sWjGmyM/Pb+pFyDhYU2uwXvphTZOHNdQPa5q5OppN+0OXQERf2QzelMNONKq3o0m6CKainukOa5o8rKF+WFM9sI56yc9yPbl7YCPC3QMZhmEYhslWUMPq3Deqoz7/2tkFdNjAnFAa4WFPVtG6nXWnqTCsnj+DuwcyDMMwTDZ1D+SaVkxcUPRtx44d1LJlS7Lb+URRB6ypNVgv/bCmycMa6oc1zWwdraT9ba3w073H5FON2092G1G/9vYmibBKZT3TGdY0eVhD/bCmemAd9eJjPTk9kIkP2mvCHc3mNpu6YU2twXrphzVNHtZQP5mmaawOedmoI0ynfXrVP/VU0/4QYXXSC1U0+tEqEZV16Ts19PpUN7Upbro6VqmqZzrDmiYPa6gf1lQPrKNe/Kwnm1YMwzAMwzA6MRovuMf/eDzbQfSUkb16BtL+ohZqX+Glc1+PnlbIMAzDMEzmwqYVwzAMwzBMI3fIy1aQ9qdy1KAc+uCiQlGnKmqhdj/RjNW+Ro9YYxiGYRim6WHTijFFs2bNmnoRMg7W1Bqsl35Y0+RhDfWT7pqa7ZCXrTou3hwuzIptdf+v3BY79SHe89moZzrDmiYPa6gf1lQPrKNemmW5nmxaMXFxOBzUu3dvcc/ogTW1BuulH9Y0eVhD/WSCpqlgvKSyjtK0OmX3QC+ghZt8VOXyWy7U3piksp7pCmuaPKyhflhTPbCOenGwnmxaMeY6FmzcuFHcM3pgTa3BeumHNU0e1lA/maBpKhgvqazj9Qfn0fsXFtAVo/OoY4mNfH6iv9cFos9QiH1ULwdFUijXHni+KUhlPdMV1jR5WEP9sKZ6YB314mM92bRi4oNOBdhRsrljgW5YU2uwXvphTZOHNdRPJmgazXhRO+Rls45tiu20b58c6tvOQUO7BLSYvbbuRPz5cfnUtrj++3Kb8AJzKuuZrrCmycMa6oc11QPrqBc/68mmFcMwDMMwjE5gvLQojN4hjwmwW9fAaejX/7hDtb5QkH1Qp4BDdcE+ufThRQXi7xpP4MSdYRiGYZjsIlBQgGEYhmEYhtECjJfOLey0o8pH/xqTR8cNzaH+HbK3FoVk4UYvfTjbQ7t3tdPIHg767G+PeHzaKh+NfrRKRKjB8NtSHjCnxvTLocGdA7ohjdDtJcrjM1eGYRiGySr4p5+Ji81mo1atWol7Rg+sqTVYL/2wpsnDGuonkzRdFeyK99hPLrr8gLxG/e5U1XHaKi89NdlFB/Z30Mu/u0URdpWpK710yds1Io2yXYmNurayUUEu0bl75VJBXsC4agpSVc90hjVNHtZQP6ypHlhHvdhYT7KVlpZyrHUjUVZWRl27dqXS0lIqKSlp6sVhGIZhGKYB8Hj9dMgTVSFTZtpNRdS1JVdkuO2zGnp5ilt0Dnzvr0CUVSQmX1PYZEXXGYZhGIbR5380b96c1qxZk5T/wWdQTFzQqWD16tVZ3bFAN6ypNVgv/bCmycMa6idTNM1x2Oina4qoXbPAVdHS6sa9PpiqOs5eG6hbhTS/WKzcllrXU1NVz3SGNU0e1lA/rKkeWEe9+FhPNq2Y+KDw6fbt27kAqkZYU2uwXvphTZOHNdRPpmlakh8wrcoa2bRKNR23VfropBeqaObqwAn3x3OiR1mBDiW2eu9fs91HNe6mWZ9U0zMTYE2ThzXUD2uqB9ZRL37Wk00rhmEYhmGYhqBFoPEd7Wxk0yrVuGRCDU1dESe8iogcdqJBHe10+FNVdMRTlaHHj3iqikb+t5Lmb8jeq8wMwzAMk62wacUwDMMwDKORV6a46MDHKmlGMLKotJqylkWbvPT7ci95Tfh2e/V00Fl75oq/i5110VYFuYG/q5so0ophGIZhmKaDTSsmLuhU0KFDh6zuWKAb1tQarJd+WNPkYQ31kymaLt3iowUb66KCSmv8WatjvPpUVxwQMKmaFxB9cFEhVbsCj7cN1gMD+YGXUI2bmoRU0jNTYE2ThzXUD2uqB9ZRLzbWM7VMq4cffphGjx5NnTt3pt69e9MZZ5xBS5YsCXvN8uXLady4cdSrVy/q0qULnXPOObR58+aw1wwZMkRUqVdvjzzySMzvrqmpoeuuu4569OhBnTp1ojPPPLPe56Lq/cknnywGDZbvtttuI48ndl2GTMBut4t1xj2jB9bUGqyXfljT5GEN9ZMpmq4PNmbu2tJG+/Z2UHvFgMk2HXu0jr3uhw/KDUWjVbn8tKUiYPa1LU6dSKtU0jNTYE2ThzXUD2uqB9ZRL3bWM7VMq99//50uuugi+v777+mTTz4ht9tNxx9/PFVWBuoa4B7/g88//5y++eYb8ZpTTz21XjX9W2+9lRYvXhy6XXLJJTG/+5ZbbqFJkybR66+/Tl9++SVt3LhRGFcSr9dLp5xyCrlcLvr222/pueeeo7fffpvuvfdeynSw7suWLRP3jB5YU2uwXvphTZOHNcxsTZHW9s18j7i3yobSwDnJPWPz6f2LCun4YcFQoSzUsX97B43q5RD1qlTw/6jeDtqjm4Oa5wceW7PDR5vLA8aU7LwICvIC91XBKKzGJpX01DVGm5pU1TSdYA31w5rqgXXUi5f1pBxKIT766KOw/5999lkR0TR79mwaNWoUTZ06VbR7/PXXX6mkpCT0mu7du9PPP/9MY8aMCb23uLiY2rdvb+p7S0tL6c0336SXXnqJDjjgAPHYM888QyNGjKDp06eL+x9//JEWLlxIn376KbVr1y5kjN15553C8MrLC55RZSjl5eVNvQgZB2tqDdZLP6xp8rCGmacpOtWhcDjqMElgujw/Lp9aF5m71rchGGnVsbkta3VUgXaXvF1Dvy/zhtWvev6MgFvVpaWdSjf4aO0ORFoFtGtbbE+ZSKtU01PHGE0FUknTdIU11A9rqgfWUS/lWa5nSv+ywUwCLVu2FPeIckIup9PpDL0mPz9fhMrB0FJ59NFHRarfvvvuS48//njMND6YYojYQmqipF+/ftS1a1eaNm2a+B/3gwYNChlW4KCDDqKysjJasGCBxrVmGIZhGKZJO92tDL+aif9hupjB5akzXprStEolYKScPjyXxo3IpVsPz6PJ1xSK+lXSYNmzh4NG93OIiKqtQe3aFKdOTatMG6MMwzAMk06kVKSVCtL9EMG011570cCBA8VjiHgqKiqiO+64g26//Xby+/0i0gmhckjnkyAVcOjQocLs+vPPP+muu+6iTZs20X333Rfxu1C7CpFSLVq0CHu8bdu24n0A9/hfRRpYxtpXktraWnEzOqRYXhneBxMOphvWF+sjkY8bwwCjPY7H8Fykx6WeZh53OBxiOdTH5WcaXytfH23ZU3mdoi17Y64TPkc+nynrZGbZk1kn9TsyZZ3iPd5Q6yTHoLxlwjrFW3bd66Tux5myTk29ndRxaXx9Y6zTgg3usOiV0HL5SEQJ4fl+7ewx12ljWWD58hxEc9Z66Kr3aql/ezt9eHFho20nqaP8OxXGHtLYPp/rof8cnUt92tQtF17/n7F5oeUd1ctO7Uts1K1V3TqN6mmn4rwc6t/O1iTrBKKNycben5ZuIVNjNNWPEerxM9uPe8muE58b8blRrHWKt+wNsU5SR/wfa13TaZ2y+dzIm8Q66UppTFnTCkXREcGEOlOSNm3a0GuvvUbXXnutqCkFYU466SRhUKmFya644orQ34MHDxaG1L/+9S9hdqlRWg0Nir8/8MAD9R6fN2+eSF8ErVq1om7dutHatWtp+/btodeg2BpuK1euDAsHRPRX69atRYF6FI+XoDA9Uibnz58fNjj69+8v1n/u3Ln1itUjcm3RokVhgxiP4/tQ8F4CzfC9O3fupHXr1oUeb9asmUjfhGmnmobpsE6I0BswYADt2LFDFNhv7HVCqimWFWMBO3cmrFNDbieMPVWvTFinpt5O+FHCMuOGfTwT1qmxt9OGDRtC4xLLlwnr1NTbCeMSTVawTqhH2djrNG0BXht+AUvl579WUG3nqpjrVF6TQ92bu8hh89PaVetoe1Vn2lbpF5o01naCjrjIh+PlihUrUmLsba/sJv6u2LaW5s6tiLpOx3clajW0FXVr202UhMA6DXISDepF1KF5B2ytRt+fEGmPz5e/Qbq2UyL70wpPL0wZKN4YTXQ7NdY6VVdXh46f+OxsPu4luk58bsTnRqm6naSO69evF2V8MmGdsvncaGUS61RREfi9TxZbaWmw8EIKcf3119NXX30lbkjxi8S2bdvEhkJ0VN++fYVRdfXVV0d8LcwvRGzNmDFDvNYI6mEdc8wxtGrVqrBoKxhel112GY0fP14UXP/666/pt99+Cz2PDQjD7JdffhH3ZiKtEDWGwSBrcmWSq25cRl4nXideJ14nXidep3RaJ0SpHPh49BSrH6/OjxtppS77P+t9dPjTNaJ74Kx/F2X1djrkyRpasNFHb5/npP37OCKuU43bT/m5trRZp6aKtBr9WJ0pFW2MNuQ6Ld7so5XbfNSztYMGdMzh7cTrxOvE68TrxOtEkdYJpZRgisE8k/5H2kdaQaQbbriBvvjiC9HBL5phBeDuScNpy5YtdOSRR0Z9LZxKiIhIrUgMGzaMcnNzxWcde+yx4jE4hxB35MiR4n/c/+9//xPfJdMEf/rpJyE+nMxIwKGPFNmFwYKbihopZnxtYz+OwaY+joGHyCAYfpFeH23ZU3md4i1jQ6+THGNGTdN5nRpyO+HYEEmvdF6npt5O2K9VTTNhnZJ5PJF1UjWUr0v3dbLyeEMsOzTFldFovzcNvU67dMylUb3coj4Q0q1Cy2gPFA7H81bWqVVRICKmtMYfddkbYp2gI67GRtPRzLIn83ikddpRFTgRbl1c/3izbKufjn0uYMTMuLmYCvNsYeuEOmEVtUR2G1GLQuvLuHQr0cptfurR2ia6GVpdJ+Pxsin3p/4dAkXXp67wkleZizhsRHv1qj9GY32+1bG3oxr1tGqjFIB3WFonVVMZvZatx714j/O5EZ8bmVn2hng80XVSdcyUdcrmcyNHEsseay5shchL1oQpge+9957o4of0OdSRwg0hxJK33npLdPRDCNzEiRPpnHPOEZFQcqdAwXR0/oNRhZB4fB5qY5166qmhgu4IVRw+fDjNnDlT/N+8eXM666yzRDdARE3NmjWLLr/8cmFUoY4WOPDAA4U5dfHFF4vP/v777+mee+6hCy+8sFFTDpsKNfSP0QNrag3WSz+safKwhpmnKSbgMKhU1E53VigpsIUKiNd6/Fmlo3Fyvb3SH2bkqbQpttOOKhhbRL1vr6Ajn64Me/6VKW4a9J8Kuu3zGstd9k56oYpGP1pF575RLe7xPx5PZz0xRod1DT+F79rKltAYbcoC8KmkabrCGuqHNdUD66iXmizXM6UirV5++WVxf9RRR4U9DhNq3Lhx4m+4tiisjhxN5F4ilRCmlQQ5oB9++KGoJYXUPOTRwoBS61yhUyA+p6qqLrz6/vvvF+4izCvki8KkQk0q1SWESYZ6WocccggVFhbS6aefLowuhmEYhmEyA3S0Q2e7e7+uoeVb/XTWnrk0up/506Xz3qgSaYGX759H5+yVSwgiQbR9abWf2jXLzm6ClS4iV9DraFVYX4MWBUTFThLRVKDYGf6aRLsHxjJZsI3TeYx+cXkRLdrkpbemuWljmZ8u3S8v1I2xIcB3xSoAj+fVKDaGYRiGyUjTqrS0NO5rYFjhFg2k+v3www8xPwNGlvG7ULDs4YcfFrdowCT74IMP4i4jwzAMwzDpza1HWItaQfQOTBI5sf/3Z7X05T8eKs4jKq+VphVlJTuCUVb5OUQFEbLXkNrQtaVd1LwCbYvDTauC3MD/1W7z0WrZYLJg+f8ztnHWAemV8Z7v375RFoVhGIbJMlIqPZBJTRCBhm4A0fJcGeuwptZgvfTDmiYPa5jZmiKlze31i3pKyUT15DgCdX/swbo92aYj6NjcRlNvKKLPLy8M1S8y0qVF3eP1TKu8wH21S6/Jkq56go1l9QvsNiSoB5bM8+mgabrBGuqHNdUD66gXO+vJphUTH5xgouB8tBNNxjqsqTVYL/2wpsnDGma2phdNqKFut1bQ7V/UdQGOF9WjFm8H+B91mu491km929qzUkeQ47BR99Z2GtwpelQQIq0k7ZrZk4600mmypJqeMFNHPlhJ/e+soC3lPvL5/DRztZde/cOCq5dAVBfMV6MCaFIwqrfDctRaqmmajrCG+mFN9cA66sXGerJpxcQHHQtQfN7Y1pJJHNbUGqyXfljT5GENM1dTmAJI7QNbK/yNGtWTSTpaQTWtPD5/0jWtpMmCjoPJmiyppueyLT5yBxelTbGN1pf56ehnqujWz2qFidVQPHdGPuUZCosk2qQg1TRNR1hD/bCmemAd9eJlPdm0YsyRzTtJQ8GaWoP10g9rmjysYWZqWu0ONzkaO3UqU3SU/LbUQ/dOqqXvFgSMwEj1wN7/q070+79xhXX5SyTSSnbZ693Wps1ksQoi8L6Z7xH3Opm3IaDLLh0d4sp7lxZ2GtrFLgr+fz0/ssY62Fbpp1rl44d0CjQtSLQAfCqN0XSFNdQPa6oH1lEv3izXk00rhmEYhmGyArMmQo1FcyRWVA9qNR3/fDU9OTl+mmGmMmW5l56a7KIfF3mi1gNbtNkXscsfQNfFE4bl0JGDrfUPgply0ahgQSwiuvcYZ1Imi1lgtsF0G/1oFZ37RrW4V024ZJEF6wd2qFuPo4PafDm34Uyrt6cHjMW8YJBaTcN9FcMwDMOEYNOKYRiGYZiMxqqJoBb8ViNL4kX1DOtirxfVc/AuDtpR5Re3bGV7cN1bFtos1QOTXf66tbLT06cV0O1H5icVNZfraJwoqWhF+aUJlyzzNwQ+e5eOdePtqMGBHEpouT3YrVH3/vPCbwExXcFV21LRcKmIDMMwDCOxdsmKyUrQqaB///5Z3bFAN6ypNVgv/bCmycMapo+msUwERN4YqVE6Btaa7B6I6J0vxxcJkwM1rJASiAisx34MRFiVVlHWjk1p2LUqsiVUD6x/+8S/W00p3FLuN2XQYLzA/JHs08tOT5zYz5Se0oQzoppwVouWG5m7LvD5xXl1evZsYxeRV/M3+oTZdvqIYCEwXfvPivrrtLMK6+UnhzHEMA3HaDrCGuqHNdUD66gXO+vJkVaMOfLy6sLrGT2wptZgvfTDmiYPa5j6mpqJ5IkVaeXyWIvGgSFx2MCckDHRoiAwod9Z7c/asSkjfyJFWpmpB+b3+8nl8VNptV/8bQV1W242UVQ/ksH550ofXf2hue9tyKL8MNSOfbaStlYG/h8/sSYsYvCoIYFr0RNnurTV0grtP1EWe36wvla6j9F0hTXUD2uqB9ZRL3lZriebVkxcfD6f6FiAe0YPrKk1WC/9sKbJwxqmh6aJmAhqdM7IHo6k0g1LgqZVWY0/a8dmrEgrWQ/MWPBe7fKH2kndb6ugAXdVUKViQplBbsv9+zrohkPyEjc4l/to4UZPkxblh6E2c3X02l/QS5psumppxdt/1pf6M2KMpiOsoX5YUz2wjnrxsZ5sWjEMwzAMk7kkYiK0L7HTpfvl0s2H5dFNhzpNpxue+lI1jXm0kq55vzr0ePMmirRKJWJFWsl6YKj/Fa3LX75SzKLa5bdUf0rWtNqzuyNuAfb4Bqe5CcOA9vZ6RfnxvzThdEY8qRGDD33rqve9ydbSSsXOmAzDMEx2wTWtGIZhGIbJWGQkDybvagQNInlgjEQyEXq1sdMdR+Vbrlk0L5gq1VqJKJLpgUhty0aQzicjrVpHMa1gJqG2mLEemMRms1FBbsCAUgurR6o/hW0NE0waVLce7qQrD8ijIqdNg0ET2fTCcs9d56OXp7ho9trIxhaMt2dPs15I3qyhBuOqIWppRd1/bES7dbNThxK+/s0wDMM0LPxLwzAMwzBMRhMpkmd4N3sokicWxhpKZmoSOZUa2DCwBndCkezkim+nMz9fW0RfX1FIHZrHNoWM9cBU8nNt9VI3IxUIN0YWIdINaYnvznDTPV8HiuLHqkcWLVVxaLsq6tfOHjVN9Mr3auoZVoh66tfORsV5RHhmQ1nixmX8iKaGq6WF/adv2/DvLykgmrHKR5/9rbiIDMMwDNMAcKQVExd0KhgyZEhWdyzQDWtqDdZLP6xp8rCG6aOpjOSZttJL7//lon375NDYwTlkj9L1DPWnpizz0Hlv1lCn5jaaeUuxpXQoZ44tLDrnu6uKKFvHJqKkurXCLbnPQaTVDiXdz2qXvv8EDatz9sylaz6IHp2Fe5he+AxJmyKiNy9sXU/PSGmiKj4/0eLNfnroeCcdvEtOUlFJWBfouHp7uPkkIwZH9cYpvatB0vigS882Dlq4yUNn75lD5++TR8/94qJ3Z3poezCKLp3HaLrCGuqHNdUD66gXO+vJkVaMOVwui5VPmbiwptZgvfTDmiYPa5hemqKo+kMnFNCxu+ZGNazAezPdwrACtYba2zIaxwjMg55BY0CtwdRUZNrYLMizhdW0Mltg/6XfXfTID3URVpe+Ux2xHpmMzpIGZ/tmdc9vKif6+p9aWrzJF7doeyTaNtOTRhdpXMnaX2YK2idDRW1Azz17BiLhWhcHvmibiY6M2TJGmwLWUD+sqR5YR724slxPNq2YuKBTwaJFi7K6Y4FuWFNrsF76YU2ThzXMXE1rlBQ0l6f+pBzROIj8MZoHxw7NCUtls0KsYuLpqiPA+tz7da0wApNB6i0jrcwWCP94tpue+aXuu/9a44vcHTAYnSWpCs4PcoNnyjd95qPRj9V147OSbqcu67SVnoQ6SX63wC2itlBL6tNLC+m1swto8jWFwmCT9bviFbTXYVoVB81DWbdtW7DIfjqP0XSFNdQPa6oH1lEvPtaTTSuGYRiGYbKDV6a46Kr3qmn8u9Vh9Y2MqMW+XRE8JJgE+UET5Z6xeSHzwG4LTOSdhoiYY56tooF3V9A/6+t/mFoX6dw3qsW9NEYygfkbfPTUzy6amKRpNbpvDh27a07ILJGRRUbryhhZpG7LeEgjyuP1U3lweBg9SxmVZSbdzrgsd3xRQ8c+V01P/2z+irkcH2e/HogEQ/fA/35bS8O72+tFT8kosd5tAsv24PHOkKmVrClaHiwTVhxsptkqWFQ/0fRAhmEYhjELm1YMwzAMwzRZVFBj8skcN73/l4c+mu2hF35zRYyiMkZaIT3QWIzd7UVHvMDfU5b7QuZBYR6JGlgtDV3y0DkQHfR2RpjgR6qLZCwmns7IzoEohp4Mtx7hpOfOKKChXeqMGkQW9W9vixlZJAu3t29mvntgmSK9YdOHorJApHS8WMsio6Aw9jaVmTMlExkf3VoFFirXbtNmilbKSKv8YKRVcXKRVgzDMAxjlhSousCkAw5H9nY9aihYU2uwXvphTZMn2zTERBeT6GhFrFNdU7c3/O8lm300qFP97zNG5+C1ecoZE1K07j7aSbd/UUsbFfNh/AFOcTOCDnag1JAWZrWYeDqOze1BU8No5OlARBZdXEg/LAyk3O3Xp37nwepgUBOKmG8q91OXFjZaX+oXRdKNxczle2GwvXJWPp0frGsWLSorUtH23bra6fy9c2lI5/p1pA4fmCO6Vs5Y7aNHfnDRg8fHTttLdHwE6md5xdi8ZII7qumFKCyzlEvTymkLj7RKwrRKlTGazrCG+mFN9cA66sWR5XqyacWY2knQsYDRB2tqDdZLP6xp8mSjhrGiPqxMgJtKU49h/j9vQ2TTqsZgWrkMphWKuPdpZ49YqD0SzQvqIq5UzBQT79+e0npshiKtNJhWXl/AbMqFaxjEYbPRmH45IgKoIEItMRlpheij6at8ohj/rDVeWqFoH6nuU6829rhRWTIdD+YRthUei2UyopPivw930gkvVNOE6W66eN886t02+vckOj7alwR0QOF4Haaoz+enSld4emDnFjY6bY8c6tg8MbM6lcZousIa6oc11QPrqBcH68npgUx8kBZRVlZWLz2CSRzW1Bqsl35Y0+TJNg2jdUuLVMQ6VTV1B5d9lw6B0595GyIvszQ6wIH9HfVSxNRObmoqYTRkpFVZdfjjZouJp/PYXLndF0qpTIbrP6qhLv+uoGd/Ca8Hdf83tbTrvZX0TJQ6UTJq7ty98ujbKwvp7rFOGt69zqhBBJZazFxipRsf/j5sYP0or0js3SuHDh7gEPvNg99Gr6uWzPjoUGIT5pIxss+IlWLyn19WSO9eUBCKmGtfYqdHTy6gGw+tH1mYbmM0XWEN9cOa6oF11Iuf9WTTiokPOhUsX748qzsW6IY1tQbrpR/WNHmyTUMzUR+prikKbIOhnYOm1frI37NfHwedOTKXPriogCacV0jNgnV81A5wj/7oqpdKiOLuRz9TSV/+Ex6q1Tz4/p2GSCuzxcTTcWzKWko/LgoYg+jgl0yBeacjcurm2p2Bz/totjvi9pYpoYhoQsoezKl/lO2+pdxfbyLw+zIPXfJ2NY3q44jbje+3pR66YmI1vfmn+eLqiLZCzf7P53po9proZq8V40zlrJG5tOSuZnTHUU4tpigiC/fo5qAD+uaERbklQyqM0XSHNdQPa6oH1lEvPtaTTSuGYRiGYeLTUFFBjYmMtBrWNTDZn7/RG/HK5Rkj8uihE/JpVO/IVRSmr/LSr0sDZkONkh64dLOPZq721Su4Hoq0ihD5grpIzQ2ZlZHS1dIN3QXmZbdGY2Tbiq2Bjbp8a31tYe78cUMR/fivQirJr4uiW7y57sQfJpixAx6e/+xvjzA1EYX149X5dMd+G8S9MSpr7noffTjLQ3+sMB9puEsHB520W44o2r/DYGRGGh/xjLNIJlMyppdZqlx+WrPDJ+4ZhmEYpqHgmlYMwzAMw8RFToBhPKgpgsYi1qmMrGk1sGNgIl9eQ7Slwk/tTHSWU0F0jkQ1UWqC3QidhtpKXVvaaXAne8TvgQEyum8OfTIn4H59d1UhDY5QZyudaIgC87JelTHSSi2oHqmGlDRTYay8+kctfbsgMH7bFNtEhBu2/7qdfmpdVPc+aTpKs7FfOzvVdq6ivm1t4nMK8+q24+Zyn+nuhCp3HZ1PBbkw42K/D+Nj18526tnaTnt0s9NuXa3ta5GKxVs1RTeU+ujTvz0i7fC4oUH3kIiOebZK1IWbcF4BHdifpxQMwzBMw8C/MIwp8vPT+4pvKsKaWoP10g9rmjzZpiEmwMc/X0VLNscuYp2qmn50caEwllCUG9E33VvZyZlT3zTYWuGjHLuNxj5bRet2+uizy8KNJBgdkmZOm4jWgkEii7LLeleS00fkils0nMrrW2jqsteUY7MhCswX5AXuqw1RPbFMKxWYlPd8XZfCN6STXaRrYltuKPXTrp3rXisL5rcIFtAHs7Y0p3MfrKFBnewiZVSCjoSgfTNryQtmuylibL36h1s0B7h8/yLqGadAvHzPOa9Xi/V654ICunpMHv2+LFBQ7ZoDc+nGQ62NjaVbfHTXl7XUv709zLRCl0VgjFQzS7YdPxsC1lA/rKkeWEe95Ge5nmxaMaY6FgwYMKCpFyOjYE2twXrphzVNnmzUEFEfQzo5aMnmgDtzxEAHvXJ28l0DG0vT7q3rJvz92kWPVjn++WoxUZcYOwRuDZpWT5ySTyfvXjeJr5WRVhGMsFi4lM/fWu6nLi0orcdmQ6SSRou0ilWXdlOZj16a4qbWhTa6dP88YULtDBbDR32rc/bKpZJ8FC0PXx5Ze0waiNBztwHdaNMPVeRa4w2ZlGBzWeC17YId+6yCulvv/+Wh1kU2OnRg/dNymGIwrGC6dWlp7juwbLPW+sQ43VjmF6mOklaGgvNmqKgNrGMzQ4ksLDPYppi46TJGMwHWUD+sqR5YR704WE+uacXEB0Xftm3bltXF33TDmlqD9dIPa5o82arhEsXMqTRfezqtNDXWTao1/C8jrdoWh5sIte76kVOmvk8xrTYrqYfpqqNMJQ2WVtJSSylaTatYkVYbyvz01GQXvTQlMFDbFAdOe286NI+O2xU1pez1DCsgjS2ZHggdOzh3iu26o4pohRJJtjk4FtoZxoJZ3vjTTdd+WEO3f1FDrqDpqbJyW2Abdm5hs1QEvUMwXXFTmT/0GReOyqXjhlq/Xo00WlBk0KpVYeKRVk09RjMB1lA/rKkeWEe9+FhPNq2Y+OCK4po1a7K6zaZuWFNrsF76YU2TJxs19Pn8oti4ZF2pP600fei7WnFDQfT1pT667sMauuDNoEOhIKN5ZAHrWkN5pqimVaimVfjrl23x0T4PVdDoRysjLpd8X+CzfRkxNpFKWhhM6dORStqtpZ0OHuCgYV3CDa/DI0QnSWQqIaK00LVQ1p968FsXHfh4VdRuhnXpgYHtCx03rl8j6pKBv5SOf5vLfElFWp02PFeMo1Xb/TRhev0OiKuCBlmPVtZO2dsHl2dTuY9WBE2rY3fNDRl3VqgM6mjsohmKtKr0p+UYTXdYQ/2wpnpgHfXiZz3ZtGIYhmEYxhzry/xh6VkbS31pdRL1xE8ueuQHF1XW+inPQfT2dDd9Pd8j/leR0Twy0kZN3/P6/LQ9OEm/6ZMaOu65KlGoWkaioEtdviE9MC8nEJ0jI16M3HiIUxQGB2WJNddLOaCBHCv/O95Jk68prNd5zwr79smhN88tpGsPDs9Ru+agOmfMOBbl9yNKC90MZcSQZOoKLx30WBXd9llNRNNKbn/J7l2DptVqb8hsLKulhGpaSVDU/drgOsixqbJyu69eaqsZ2pcEXg8zbH3QXE60w6dMDyw2mJChmlYJmFZqp8Zv5ntEcX6GYRiGiQTXtGIYhmEYxhQyyqpnaxu9c34hdWhuC9X2SXVgaHiCnlGuI5Aqho5vqBm0YKOPhnd3hF4n0/VQA2l7JUyrukk5Ut6m3lgk6gWd8UqVSCVD5FbH5kTfXKm0oFOQ5gdqY8EQM3aMG9rFQVNvKBLpZzkWUsBSmemrAl36urSw0bg9DW6HRlCT6q3zCijXHqhvpQ7HaplK6KfI3Qz9gZpRH8xy0z3H1EWAoYMjDC5Z/F2yW5fwSCvULlt1T7GIvINZmSjjRubSC7+5hLH5/K+uMGNuVdDotBxpFUwPnLYSNbgCj8GkRaTa/n2tnf5Ls69YY6QVjK6bfuxIf2+uMwyRUooIvUSNTYZhGCYz4V8FxhTNmjVr6kXIOFhTa7Be+mFNkyfbNFwSNK0GdHCIyA+rBcebUlNpWAF0BgQDOwZOg+ZtqDM03F5EU9UZIsb0QJh0XVvaabeuDhElE6k4uBFEqMj6TjKKxwiitHQaVk09NqcETaK9e1mvXxWLSNFUe/Vw0L69HWQ3FNFCAXPxnjifWVpNVKV0JXTYbaIIuzq+oaeMtJq33hcyxFBnCrWxkjFv8Rk3HRowqp75xSW6V0rW7JCRVraE0gMRTSa5/xsXfb/Q0FXABDL6y1j/q087u2jG0Ku1zXKk1KXv1NI/W5T2jFjWlV665O0MCTVsJJp6P89EWFM9sI56aZblenKkFWOqY0Hv3r2bejEyCtbUGqyXfljT5MlGDWXR6b7t7GmnKcwoCSKtwKBODvppsZfmbfBFLIq+e1eHiIqSBafNFgc3AjMFkTiIykJnuvYl4c9/9rdbGCwH9nckVHMo1cYmDIyv5wUco3166TnVnL/BS0c9UyW2xcxbikOPo04YOuR9e2Wh6AioIo0l2QUwFkih69PWFlNPGGaoq9WrjV1srwJD7bJkGDskh57+xU5z1/no8Z9c9J+xgdCtjy8ppHU7/dTaYqH3DiV20e2vPJi+KHElkIV3wag8OniXHGHWSlAL7P8+qw1FsL0702M6UgrjY8oK7HPh6wSz+PdlXvF8IsX6s42m3s8zEdZUD6yjXhysJ5tWTHzQqWDz5s3Url07sts5OE8HrKk1WC/9sKbJk40a3nq4k645ME/UePpwlpt+XuKhowfn0qEximGniqZhkVbStApGWsEQkWAafcbwXGF43HOMs14EzYxVXpo030PDutiDtav8wsBAkfoTXqgWRdhfGldQr2g1UgRhWEWqWXXP17W0Zodf1Bzao5uDnjo1PAIlXcYmjAzUjlJT8d7600WH7OJIOuULRiN0DqX8BUHKJZg4002929pD0W+gOtjdEoXOYaggkkdG0clC+04HUZWbaO0OH/Vpaxdpazd/UiPqNT1wXH49PVFXS4JaTDAcD+ibQ6fskZyDBWPztsOdoq4VCqZLEH1nNcoKHLqLgxbf1UykriKt9/nfXPTZ3x5yWw+0EiYdbirYztAzUqQUapfFYqXSfTHa8/3bW1/ObCMbf4MaGtZUD6yjXnysJ6cHMvERXXM2bkyrYrupDmtqDdZLP6xp8mSrhjAFELkyc7WX3v/LQzOVTmqprKkbBYyCoP5RuGnlEwXWAcymh0/Kp2dOL4iY8gXT6umfXfTVP56wSCtEaP250ku/LPGGUgFVSoJ1rSKlB0rjBZP1SfMScBVSZGxGMjJmr/NpSfkqkKmYQSNKIuuNvTzFXU/bE3fLFfWpkHqHCCB0L1TB/3t0C4yBtTt9oe6Nn8/10Kdz3HH1nL3WSx/N9tAsTfsAak19fElBqL5aMsixixTX3bs5aLdg18VaZT9IFERCwZhUDUBjpFQs4hWET7RgfLaRrb9BDQlrqgfWUS9+1pMjrRiGYRiGiQ8mojBVMKFE6k6n5oGJ5frgZD/V8QTn0ZjLy9pHiB5BilfbZjZRWF3WAYoFTA2Abn+bygOvh2EljSeAgupG+rWzi4LYMjVRpVaJHqp0BeorqRFD6YA0MozoSvmSqXjQGlFtchuq6W5yG0sQLdWqqO47EQFkHMeIqvp1mY/W7ghsA2l8xUopRDc91EHbXBZ4bbtg0XMdqEbpb0s99PYMt6jXdcaI5IrZy3Gnpsma5ePZbhHhdmD/HJF2mGykFHTv185GizeHfw4i32AkcmogwzAMo8KmFcMwDMMwllK+kGo1dtecUC2gdAAGBuoehaeH2eif/ysWxa5nr/VRj9b+UL0iRFH973sXTZjmpkv2y6UrRwcKZaNTHIDRVbQtYKYgSKs2GPGTY4/cATBWyp9aR0t8R7k/oZSwpqShU74KlI6L0KswL2BeqSaMmXpNMETU5ejcwhaKmoKhhaLsasdHIzAUB95dIb53SOdAlJYZs9MKO6v89NTPLnp1ikukLlbW+BMyrS57p5o+meOh0f0cNCy4rKq5qmI081SQsrh0i48+vMguTKtkI6Vg+u2I0HEQhtXzZyTRhpFhGIbJSNi0Ykxd9WvVqlXatDVPB1hTa7Be+mFNkydbNIxWu6a0JjDpXF/qMzXxbWpN0aHNWKg7kiE3uJOd/lkfqG80pp+DtlWG16EKmVbFdnrj3ICRBVZu80WNsooFwv2lkQADDN3w8B3dW1Najc2GTvnKV3SVkWhqV0fgCaZ4qjWnFm7y0r69c0StMCPY/j8Eu+n9vMRLox+tor7BYuyqaaXqie/F2Fiw0SeKpoN2zfRW21i+1SdSUCXfLvTSSS9UmSpyrq4baliByYu94gYqa32mTGn1u2T3QHS4BNi3o9UIMxMp9d9va2lLJVGXEi/ddHgBXfmei1oXBiLhGPNky29QY8Ka6oF11IuN9eSaVkx8UPCtW7duWVv4rSFgTa3BeumHNU2ebNAwVu0aGDtgQ6mftlb4xKQak/5z36gW9/gfE+JU1jSSIYf6VqAgDwZUMAUtGEUFtpZL0yr85FFGWjmViCAzqJEvsjvb5nJf2o3Nzi3sVBihFjmMjFG9k0/5QjqgNK5g7AE0BFAx/v/lP2564BsXTV3hibr9Z6wO13rp1sB2bKmYVkY9d+savi460wPBfZNqDX316oqcmwXrZvDwRK01pJ+aLaguKQ+aVmpzgWg1wmJFSuF48sKvtfTS74EN+N+Timm/PoFBs6Max5X0iNpMFbLhN6ixYU31wDrqxc56smnFmOtYsHr1anHP6IE1tQbrpR/WNHmyQcN4KV/SdLngzeq4E9/G1hQTZETayKLQMNYe/6mWXvvDFdOQk/Nmv48oL6e+GSIjrVDTSgUphcaIIJWJM9y0z0MV9H+f18QwrWxh35EuYxNmw/h3q0Uqm7Fml86Ur337OET0G4wwacKcMCwnYodIdZuoqYWSaNtf1rlV690a9ZTF2yXtNZpWcrmMI8BskXP1M4xgbM9a4wt9hpmC6kjBlEZXcV1goYjCQmTUAX0DG/zqMbni/0iRYDCvpal9x5cusW6ti4ha+zdQq0K/2I5YNtSVY8yTDb9BjQ1rqgfWUS8+1pNNK8Zc6sL27duzumOBblhTa7Be+mFNkycbNIyX0tUqmM0zbRW67yU+ydapqTpBVqO+Fm70iaibx39ymTLk8Kw0raSxhAm8NJQQffLOdDeNe7WK3p7uEuuLOkuyy52RGo+fVmzz07qd4d+L2lkvn5lPT5+WT51a2EWh+PJg6mW6jE3o+u0Cr0iN/OSSQpp8TSG9dnaBuI9mZCTCm+cW0tvnF1Kn5vZQ5M/TpxVQrza2eh0iAYqHRzOt4m1/9aOMeu5uiLRCCmlj1gbT9RlmXgcjUg6j4mB6oEqXYHRgXjAqMRKRorl2VhHd+GWeMKxk1OLGYGF7xhzZ8BvU2LCmemAd9eJnPbmmFcMwDMMwkYlXu+apU/Np5iovXTihpsEKcFslWrrTPV/Xir9llE48Qw7d45zBgupI/YMZdvGE6lAk1skvVosi3jChUOMIhbKX3d0s6ufJGkmyO50EKYhHDg6kSB0+MIfuO8YZsZB7qvLeTLcoGg4eOSmfdg/WjmrMbX7vMflU48Z2CDeTqoMRQkj1NBJv+1++f/TC562LbKHoIHDQ41X16kA1ZW0ws59h5nUomg6wvrKDo0qLKOM6bldJP9GczYW0eLNPFLLfVO6nzcHUW4ZhGIZR4UgrhmEYhmGiEqt2DTqJ5cQpVZRsAW4rxEp3mhMsmi3T16QhJ00siaxziugPZ25dVzqYYX+uDP9g2TlRpqHFQppWZVEm9wBFvtPJsJqxyks3fBQwLK8ak0cnDIvgajQgiHyDoYgUtcMH5YoOkcbotmgpm9G2v6zBJc23SFz2Tv16UYmkw0Yi3nKZqQ0W7TMAjCf5GWa+S0b9NXMGigEb2b2rnc4Ynlsv+kwSP5rLF0qv3FiWvakvDMMwTHTYtGLigpOUDh06ZHXHAt2wptZgvfTDmiZPtmgoa9d0bE6iOPQb5+SHunwh7e7cNyJP1BMpwJ2spr8vi1xwWyUHISMxDLluwbpSSCmDcYVugsV5FLP+0SYTk+3mwSLWOw2m1fZKP308200/Loq/7Kk2NoucJKJkECF20yHRI5N0gVTMPreXi1pl4O/1PupxWwUNf6Ay4uvrIq1s5g3ZHvZ6NbhUPaNGDiWQDhuNRIqcm/kM0KrI2nchFXPCeQX0xCkFEb8HUYIPn5RPxw7NTci07tnaIVIMOzXP7ONoQ5Atv0GNCWuqB9ZRLzbWk9MDmfigUwF2FEYfrKk1WC/9sKbJk20a/nVLMxHZIs+ZEHn0x4roE/RECnAnqilS97A8kcwEI2qhcGnIHfVMJf212kf/PjyPerex02d/e2hYVzsdPSRX3GCSvDszuqm0vcpPvyzx0HO/umiPbg667mClYrUx0spQr2r5Vh9d/m4NdW9lo/cvLKT7vgl0jnvm9MgmQSqNzV06OOir8YXC4EN3v4YGBfFRFLzK5Q/r6oiIt/f/cosxJzswhte0ivx5cvv/vc5LRz5dJYyn4nw7Pfiti644II+6tbLX03Plttjmoo50WLlcMMDweTB+rHZfNH6Gy+uni9FR0GeLbErfXB56TJrSoMhpowP7Jz5dkNFcxn1TphgP6JhD9x2LW8JfkbVk229QY8Ca6oF11Iud9eRIKyY+Xq+Xli1bJu4ZPbCm1mC99MOaJk82aghjQo02idah/rWzA9FYVuv7JKpppDpWxgnywI6BZYmUztgjaE4gCguRI8+dUUBn75lnOlokx060dqePflrsFQZIJJoHPaiymkC3PQnS22RtKzz8yRwPfT3fk1TB1YYcmzAuF26s+9w2xXZhbDQG0nySZpTa1fGq92po1prw9X35rAL65NICYa7FYtfODtqtS2AMwKB88093WDF8VU8dNaesGD6HDcyxbFhF+ox+7QLrV6t5SGCcou5VrGjDx0/JF0asMaLtln02ZtXxUzfZ+BvU0LCmemAd9eJlPdm0YsxRXl53BY7RA2tqDdZLP6xp8mSrhvE7mNkaTdNodaxUENFx2X55IYPJSOcWdurSwhYWhRUpWsQYTCT/Rx0qWdcK5lMkSvJt1LVlIN1QrYFVEzReUD+rbbC2D55HRFEqjs2HvnfRoU9WiQLsjU1+sAug1M9owKD2mArMqj175Igug/EY2cNRrxB/JD111JxqCnKDtdJkdJoRdL6MxOLNXtElc+qKyBFmf6/zUd87KuiIp6qifveq7T7RjRPdRl89K190lZx4QT453GWJrAqjkK2/QQ0Ja6oH1lEv5VmuJ6cHMgzDMAwTkxVbfXTzJzWi9szDJ+Y3arRJsgbavcc46fx98mhHlV9E3SCVzci/D3eKm5zUw9hCVNmfKz0igqdXG7uo/XPU01W0anvd9/VrZ6OFm/zk8SJiKvCYM8qZVV6OjabdVFzv8Vp3XbFwFGIvygsYVuikVtxIEUxmQe2tx35M0k3TGmkVvu2xHRIF5tYrf7hDhpjsihcJjAUUXUcNq2TSYRuTvOC4dEfRCGNPpl2qTFnmpVs+raWjBufQXj3rD26pk7FWm8rUYGrgfn1yRMF8oEYMrN7uoysmVgvj+cvxhqJbDMMwTNbDphXDMAzDMDHZVO6jX5Z6qVcbX1i0CVLyjBFOaneyxiCeQYboF9Cy0CaMiXjApPr0b48wuwa0t9Pq7X5y5vhFquPYXXPpqckuOmSAg249wkl92gbCbRx2Gz36Q6342xnBFIuFNLtkFFG7ZjZasc1PWyp8wixLFZB6d80HgaL7l++fS6fs0bidAtWC6rLAupoeCNxeJaXP56dnf3EJk/LMPXOjRsBJDhrgoF+vK6IRD1SKCLq1O3zUP0paoY6aU41NnqNuvCGlz1jQt0crG22t8NMth4WHXJXXBjQtrl+mLaxWW7U7kOoaSWdZ+27vXpE1gtE7fZVP6I7thv2JYRiGYSSpczbEpCw4senatWtWdyzQDWtqDdZLP6xp8mSThuU1dSlu8bqTydpNjaVptHQtzHv7tLVR6yJr20dG8SAyBdFRakRPRbDO0eBOgTQwTK7lBDtkPlm8HFiXVlhXIwpsKfenxNiEMfPODBed+WqVWEcYdjIqrakjraTmEjWKCLreO8lFt31eGzN1VIJIoYveqhZ/o7bY6MeqRHdMFPmPpqeOmlONBSKi3jq3gN67sCBm+mDP1uE7UkXAi40a9VeSj/EW+Ls0QrQVjMSZqwMbRj1eqJq2KbaJ/RW6wzhjzJFNv0GNBWuqB9ZRLzbWkyOtGHMdC1q3bt3Ui5FRsKbWYL30w5omTyZraIwgKQ2aNSVKypQx2gTRG+e9WUNur63RNY2UroX6VEu3+GnNDj+1KSZRPPzXpV7q2cZOBw8IP/1Zs91Hl71bTR4fUfOgMYcIHZlSJSN6ZNRJpBpJdQXVoy/n9R/V0JRlHrrr6Hw6ZJeceoXYZaQVQHpgU47NSB0ZYRr9Z2x+k0XC9GhtF7WnkKYKOja3CdMIxdONppU0tswaiVhX1GdSQSQhxpVoKpDm+zoM2IMM414FcyEYv0bzVxq10UwrpNGWOIlKawLGX7tm9c2waTcV0bSV3lAx+EhjtG2xjTaV+2ljmZ/alyS4kllGJv8GNRWsqR5YR73YWU+OtGLig7oDCxcuzOqOBbphTa3BeumHNU2eTNQQRgWiS0Y/WkXnvlEt7vH/hp2+epFWxmiTAcFUKtUsaCxNpYHWPjhhfu70fFFYXTWFpq3y0u1f1NJb0+oXEM/PJZq52idMC3RCkwaNNKBkwe+KYMSZTJVaX+qjiydUi3o8MLxArDS0zWU+kfq3ubzOHEGdnydOyadz98oNTd5hIEiDzAhMQpg0uG/IsRmpIyPMu+s+CorQBJyzVx59emkhnbd3Xki7184uoFP3CGwoj9KVUaYQYtvCWIlFtG6YiNCCEbpggzvj9nUjH15cSP93hJNmrfHR1oq68Sn3h2YxynU1DxatLw0EqtUD0YPoyqlGCRjHaLuS5M3abCMTf4OaGtZUD6yjXrysJ0daMeaoqWm6k9RMhTW1BuulH9Y0eTJNw0hGBf5fsyO6aSVBis+dRzmjdiFrDE3tYlLsF9FUgXQnfyj6RhbpjtQhsFVRXXrSup3BwuiItDJ0XLv/OCddd3CeiPARy+om+nyuR5hYS+5qRncf7axnfESq/6NO7nu3tYub5P+OdNI9xzjrRTNFinxCWiSizGDa6dRRmjhGUDIKJg6eT6WUuDNH5tH+fXNEZ0ZJdXCbyZTCZIr5r9zmo46e9N/X0fERpvLJu+eKwutGnv/VRRvK/HT0kBwRnQjK46QHytTD1eSnnVXWDCd1jHZoZqO5RLSxzEQup4F0qi2mm0z7DUoFWFM9sI56qclyPdm0YhiGYRgmulHhI1q9wx+3XhUmtZfsl6RjlSRuX50xFUrtk6aVfC5CjDkMItS+2lLhFylK0uyQnyFrJ3VsbqeOzevehygetS4VIkmCPlds0yqYchWJSGZCLENRpq/pJL6J46f+7anJkQXFh3d3iJuKjLSK1C3SSPxumHaq3URpz00f11CNh+jA/jkRxxnSf2FalSnjszIYaVUUw7Q6dJccGtwRqYHhr/F4/SJic/euDrp0/7yoYxu0L8GO6bUUaWXVyGUYhmHSEz6iMwzDMAwT16iIF2mVCmCSDFCXR3ZLk1FSMtIqJ0oghnHCDbMDt15tbKJLIAwSI/nBVEAYYvK7Y1EXaVX32vkbvPTtfA8t2+KLaygaC4rL9LVYqYKJEN/EaZpxMGmem4beWyGMEPDQdy7q+u9yuuOL+legZZqqmUiraMX88T+6T6q1mNIZY402lds+q6FFmwIDTDWtrj/EKdJt9+wRPYLpuoOd9PBJ+TS0S/hr/lnvox8WeemF31wxa72BLi1t1LmFLWIkZDRiGbkMwzBM5pAZv8JMgxd/69Wrl7hn9MCaWoP10g9rmjyZpmE8I+Knqwtp/AGxI6nQJezXpZ6E61olq2ldNBWKqAfWR6YHuoN5e3guWnqjNCoO6u8QKYO4/X59Mf34ryIR0fPoD7X0xE+1tL1SphDWvf++b2rpognV9MfyCI6AwfRTTau3p7vpnDeq6YNZgXCttTt9dOnb1XTJ29WWIp906ggTZ59e9d8rTZymSsHCJkQkzvZKXyiKDtt86RYfffWPm+atrzMwqt3mI62idcPE/8+fkZ8x+7rsEIiOfkZ+Weqt1y0UjOjuoGOH5lLXYPF7K/yxIvCZe/YMdNpUMWp69Rgnzbi5mK4aY64zZWMbualIpozLVII11QPrqBc768npgUx8cKJeUsKtXHTCmlqD9dIPa5o8maahjDbBRFOtywSjApP3AR3jGxWnvlRFlS6iP24oSigaJ1lNd+vqEOlMBXl1tatkap+MtHLEibS6+dA8umJ05InzE5NdIhXwuKG5wtBSu9JNXuylBRt9dOSgnJi1f4ymlTRXZCQKAro+/dsjIsVk+pvVyCcdY/P2I/Lp8KerIpo4TQXqjKmaySL7Py7yitsF++TSPccENvBuXRz04cUFobpk8TB2wzTWR8qEfT3UWCCCr+pVdnp1fJoB47SiNmAqymhCIA3cvXvW3ycijVErtanSJYW1Icm036BUgDXVA+uoFxvryZFWTHzQqWDu3LlZ3bFAN6ypNVgv/bCmyZOJGiLaZFBHe8JGhTQVahKMtEpW0/cuLKQvxxdRhxI7XTUmj14cl09793KERVxFqmkFurSwU9eWdRFaRhCdImtXyaLU6EonjQA50Y+VBoVoLnwH6mdJpPEiUw3RPVBGEZXVhBuKxiCxaJFPOsbmiu2BEJYBHWyiQ9/kawqFqdOUtYJkqp80rYxpbnIbgxaFNtqnV069WlfxkN0wVU0zZV+XRq6qk0SNWCpX0gMRAfjFXDdVuaLv08/+4qZ+d1aIFMO6z/PTn8HUvb2C+2DY9ymaRutaisfTLYW1McmUcZlKsKZ6YB314mU9OdKKMUc27yQNBWtqDdZLP6ypeaJFAGSahjAk/n24k05/JZCadvuReXTZ/k66+r1qqnIT3XKYk3q1iW5a5BtMhUTQpSkMC5VT98ilkT0com5OJG481Ek3HFI//fHwpyqposZPL51ZV4Ue3QIliLZC5MqOYOc0Z4x0tIMG5NC0AcG2bBQe9eLMrTP+SvIDhtXmch81L3CEDMWxz1TRCiXCJJahmKyOs9YE3r9Pzxxh4qQCBcFC3tVBA0XWK8P2QKSPjKZrCDJhXw8Ysv6QbpFSa9WaVoigunJiwIj66OIC2tuwT0lkgwY1QgtRhxjD2DaDDUa4UVNRmyqYSmi2yYA0cqcs95K6NjIyNFqkVqZ1GsyEcZlqsKZ6YB314s1yPVPjLIRhGIZhUpBY3alaNF2WVIOipg7lBEN7UEx5W6Wfrj0odk2rQP0gf8I1rRqSnm3s4haL0mqigf+pEEbUwjuKxSQfBdJhiMiugnhOjcaaeQteR3Tw41W0eLMvLGXQDLXu+hFabZvZqazGR1vK/dS3XZ2heEDfHFqxzU3HD82hq0bnmUrZTNa0GtY1dSb2xkir2uBuWZRno4paP7mUWk1/r/OKGmv929lpn958ugucMmU2RqTVwyc66ZABOeLYd+GbdXXVTnihOmpnPpkSuLPu5fRH8JiJmlg5MVI0sc9E61oqa1NFM5ewLPs+XEk7lSzW7q1sdGME85k7DTIMw6QvfJRmGIZhmChkY3cqNbVvS4VfRFvIyIt43QN1RFrFAhPYb+Z7xL36t0yzQ2e5Pe6vEAbGnLVe+mSOmxZuNH91ssaD9Q2k5slUKmlQwbQDxQYNipzoeGYLpfk5o6QXxjMJZWqlmiII/VXuPy6f7hnrpI/neOjfn9VSQ4FUyLnrAi7G7illWoWnn8r0wCJn/Wihn5d46N+f1tL7fzXQYExDbj/KSa+elU9DOtmjmlbDujiEaYpj3/RVPlPHvki12ipdfmrmpFB6bjRWbvPFeT66AQ6zSRpOMnV2+VY/Hftcdb30wkSO5cZjDMMwDNM08KUnJi7oVNC/f/+s7ligG9bUGqyXflhT892pokUALN1CGamhGmm1pdwnDChZAyeeaSUjYRKtaRVtXEaKklBBxMSjJ+WLznLic2xEb05z04RpbhF1MaCDQxSFXr7VJyblgzrVn0ija9+hT1SF1gOFT4GMnNoWNJAwEY9tPkVfP0SgnfB8lZjcf391ERXm2ahGpgfm1C8KL9dHpUuwixsMtobavzFRx3IV5xH1TKHaQDCnUHOtMC+QujawAyLSHMJgXL7VG1bjqtoVnlKYDJlyvNyvT/TTfmn4Ib0u3rHPGP3UPIJp9a8DnXTFAXnCAI6laUEplim4sSzWpkLdrDXB2mtG1PRCq+uTLlFZmTIuUwnWVA+so17srCebVow58vJip4Qw1mFNrcF66Yc1paS6U63Y5qM+bTNPwxOG5dDOaifd8UUtba7wh4oywwgqyjMbCaN3XEaKklDBc1e+V5ebBBNDpkLJSfMHf3no7RluuvmwvIimFYwqWZcqRzkvROof2F4VOdLq0R9qRYrTxrL4hdhhgM1d7xOTZUzwYVqN3z+PThjmo8FKqh8iraA3IsbqfUbIGIz+PYnu38bJeoWL6JSXqlNmso5lgNknufbggIP41jSX6B7oUTrgSVMvlolohUw/Xv59axGt3uGnz+e6ae0On6XOfJEirQDSAnMcsTXt194uDCHsw2ox+Hi1qcCGMqSEBv5WO54aDSmrnQZjRWVFq7HVVGT6uGwKWFM9sI56yctyPZv+DIRJeXw+n+hYgHtGD6ypNVgv/bCm8YnXfap7K8pIDTHRlMXWkZ5WGkoNDHTLi8XpI3Lp9iOdNDhC+lGi41JGSagTWiN47s+VdS+A6WTslOYOzmpzo6xDy+DEG1QqgR95wXo8iND69spCeuTE8GJmvyxFGqKHnjktn5bdXRyzUL1oWx00vWTK5aEDc+icvfKoe+u69916hJNW31tM1xxUF9b11ORaOvPVKvptqTduNFui+3e6psPu2cNBD53gpPP3yasfaRWjMH62HS+nrvCIboCo0xZpv99S4aMHvnHRT4sMbRnjHBubFwbNak8gmlCmyprVFKYoDCqrXUthqHcsib19ZdH1WKjPRzveqCZYMuhMOcyUcZlKsKZ6YB314mM9OdKKYRiGYaJ1looVAdCvnZ3mbqKMJFRTqdxPZcEAphLF1InGcUM1hbUoxIuSMILtA3MoN1hbSnZKk53lokV+qIacNLrUSCuYYEM613+zjOTBexA5FQ90WttRhaLV0dcrktEyeXFgMt25RTA9UHOpJqspVKlE33YOcVORzQBkyipD9MJvbvp6nocePN5JvSNEiUpDtcZjo1G97DRlhVfUeIsX/YSU2aMG51DzfJsYL//6sEbUlLvr6HxTnScRQYcIpud+raW7vnTR4I42UxFNu3Rw0DsXFNDoR5VK7AbUY7mZ9bEalWX296RNsS0tUg4ZhmFSETatGIZhmKwnWg2TB4530s2f1IpJe/0IgNTrkKeDL+a66bO/PXToLg66eN88UVAZ5Z1KnE1T2yhelIQRmdqXZ0gPdAeNRxmBFQ9p0nRujrpJ/qjvyw+aY7FqTKkE6v/UmYG/LfUIfRHJhaLu0Wr3zFobWJFRvR30xp9u099nFp2T9YbksCcrhZn60SWFdMXEalqy2UevnFVAowwdAmUzAB2RVplCaJ+IEEgFLdft9IcimJ47I5/OfaOaZq72xY1+gkn80pkF4m/UGkPnQERpIjrTCqN65VCn5m7q3tq8ORrt4gK2+j696wwp0Wnwf5VhHQ736mGPsD7+pI9HkX5Pmucj3ZfSIuWQYRgm1WDTimEYhsl6oqVFwbDChKL/neVUVkP02tmIHAiEbni9mdlRavZaH30+10OX7JsbMgLW3lscKhgeiw2lPtpQ6heRWl1b6YkekJPSP1Z469WtUSMmhnWxiwk2/lYjpNzB5ZaRVvL5SBNNZAJ6g9+B6A01EuKXJR564qdaGt7dQfv0qjt9kpE8N31cS3+t9tL/TsgXqVbRkEWrZaTVxW/XiFpak68pDE2w15f66O4va0VxbJgBizb5qMpFVOwk2jUY7aW7Q6OVFKqmBLXDUKC+shZdLZFmGahFNnmxRxRoH9kjJyx9UldNq0wgtE9EOHR9NNsTikKC0QsD9YvLi+pFn8YD3ftgWKG2224WO08iknHmLcVkFeyjMH/UiwvtmhGdtkdOyHzGPtym2E47q+ucrX375NDWCj+1Lorf7MFMja1YvyelETJs0yGKkWEYJhXgeFQmLuhUMGTIkKzuWKAb1tQarJd+WFMyXcPkqKcr6dQ9cunDiwrCum9lqoZ1k31bWOqcmdS353910VHPVNFrU6N3A4tFNE0xKe3fLvr3YzJ5/7H5NLijXXSUU2tRuYIulCdOTStMNI2mmFrP6fuFHrof9X4Wh09GVZ0mzvRENcUkSKECZUHTStb/MUYEffq3R9S+8fn8NHN14DthAsD0gpm2X2+HiGqJRCJjU5qDRnWwPojuSpVJtTQJYdrJ1M/5G3x0+ivVdNvndaEs1x/spDfOKaD9+yZ/fTZT9vXc4D5hrDmFMWYcSrIBA7Y7UvzibX+MRTQOgHkox6q6bzSEpqe+VEWHPllJa7b7xcUFGL+PneSkoZ3ttKmc6Mr3aoX5fNILVbS1wifMYCAjwB781hV6/vw3qmM2ezBTY8tsDb5kU6AzbVymEqypHlhHvdhZT460YszhcrkoP99inDcTE9bUGqyXflhTcxOGv9b4RKHsfQzpR5mqoYyoQjrahGku2rd3TliR8FgUBI2tZOotRdIUURLn7J0nIt9262qnfx2YR+e8XiO6GX45vi5C6Tuls9yYfoiuyA9FCLlj1LQyU89Jpvagfo+KGsmD6BKkSsWiY3MbdW1pC0W91Ab1VrsOtikKfAYirXZU+0UEF9i9q4NaFtrog4vjpxMlMjZFQez/VoalMZmdrDcWAXPPL2pWyTS3Imd4NJ2M2hnSWd/3ZsK+7owSaSWjC1UQwTZpvktETY7plxPTgAJnvlYtOjhK9jYUVreqKUywePvS3+u8It3PGdwHcRy49dNa+mdDuGMEM+qit6pFtCIwpulNWe6NmRQ40GSNrUQNqGSiGDNhXKYarKkeWEe9uLJcz+y16xjToFPBokWLsrpjgW5YU2uwXvphTa1NGIydrTJZQxlp9csSL13/US1d/1ENXTyhmj6dE9+JkgZOoqZVLE03lQWWa0gnB/VtW7c9okWADOjgoFP2yA2li113sJNejNClzMxE85zXq+mdGYGVahaMlIpmWsUDxamn3VRMZ+2ZR26vPxSR4QzWxgJ5OTZqGZwjI31p5prAi/boZi7aKdGxieg0mXb48IlOEbmCyXoqFYouyKvrDlgb9EiKg7XAZP0y3WTKvp4bpaaVGhXUIlCaijaW+kTK6/lv1pjStZmhHtvevRwJaYoU3D3ur6AnJ8eO1txZ5Q/Vp+oeTEWOFTU7VekuaoyojGczLdnkj9mtM1EDCq9MJooxU8ZlKsGa6oF11IuP9eRIK4ZhGCa7iVbIVwUFiU8clkOHD8ql3m1TZwLfEMjIH8lvwTox/dvHX29ZlFx2btOJNK3al9hC0VKIRDLLiO54kyOhieaq7XXrIw0SybUHOengATl04gvVYcaTVa1ltIikbbGddlQhpclP7YpttG4nUq4aduxNWxXYB7q3stEZI+p3l0sF1ML3Mj1Qpq56lJChj2e7RUTRQQMC9YyYgBmqpsxK1OPey2cWULFizKKOmuwqGIsWhbawZghmDVYj2Kcx5ldsjb1zr9oeeL5ds7rU5UTT7OKBJg5I0TUW+4/1exKtNpaRR0/M3sgJhmEYs/CvOMMwDJOV4Ko8agbhXqRFxUhnWbDRR/dMcoU6uGUyMqIA3a5UjBFGMaNgNBcJB5vKA5PU9s1soq7R7l3tIl1OMnedl/Z+qIJOfbkq8PoyH323wENTV3hMTzSN9ajwP75PxZgeCBNL1qOyWvRbjd5wGoYf0rIAiowjHXDxncWikDQY8UAF9bytPO7E3ipTgxNtM6ldqRBpJSOGYKwY097+81UtXf1+TagjHkN0zJAcevq0fDppt/CBqnpYaDSAYv8Yd6BTc3NTBdlgQKbmmqmBF4mewVTkFXEMKGlawWA1az4jndgK2P/bBuvC/7LU/LEfnRdlF9NYYA1/XWaiwwXDMEyWw6YVYwqHI3VPYNMV1tQarJd+slVTdIlC4V0U4EUEFe5RhPu50/Lj/iiu3OrNeA1l9E/XlvaIBcQbOtIqmqYXjsqjO49y0ogeDmHefDm+iD66pK7OTKXLLyIt1u0ITGanrfTS2a9X0wPfuEKF1BF9szlofhmJZFzif0zA45l30nwyE2k1ZbmHDn+qksa/Wx3SOs8RKHavgggSgE55wKE8j7pjgVt0nRMZm38EDb69le6IqQZSwRD1h06BiOaBeSnHpmpaSW10dQ/MhH0ddb5OGJYr7lXUWmDSuF0fNPs6tbCZOqZ+pqQPf7fQK46xeNyqptK0WrnNXKSVTA2MZz4jDW/p3c1on572uM0S1P3/6jEBR/S3pebNpdZFNvr1uiK646g80UDC2PsB39+3nY3uGeukIwclN0AzYVymGqypHlhHvTiyXM/UPSthUmonQccCRh+sqTVYL/1ks6aR2pHj/wveqqZ4cStIW8l0DV86s4Aqa/307QKPKHwuKQnWuokFjIRkalrF0nR0vxwa3S/6e+XEOyfYIU2mQqFuFLhvUq2ImHv3ggJq16z+rBUpZKjfhMg7mF+I2sAk+M4vwnvVFxnSA6ev8tJV7wVek2/irArRQXPW+sTywgDDxNVYYwe0KQ5MdrdV1n9Sfg+ijSKR6Ng8anAuNcv3xK1H1JTcd2xdCODYXQMT/sWbvWEdIlVtjF0ZEyFT93W1jtWiO4tFmiCKks9e66Vfg5FFZiKtcExdvcMfsfNmtALm0TTtETStNpX7qcrljxqxhX0oUrouzGd8LxooRGom8MKZBfWej8RrZ+fTYQNzad1OHz3zi4sGtHeYKg4P8BocPy7dz0kn754bdXmSTVvN9HHZFLCmemAd9eJgPdm0YuKDH+ny8nJq1qyZqR9rJj6sqTVYL/1kq6axusRNWxU/1UqdQGWqhqhfg5sawWA20qpfeztde1BevfeaJRlNZX0rmZYTKjod3NwyCic3zqLBqOrfvu5/aX7t08tB1x2UR30MNc2Qord2p19E/Lx5bqHpNKqd1X6h8wWjIucs3XK4k24/0km73ltJk+Z56O3zC0LRb4FObtGLQyeq42X754lbutGu2E53He0MmaY+nz/UBROppMmSKfv6mu0+mrveS22b2YM13gIgyq8k6AV+Pc9Dr/5R5zp3bh57fc103oxUaDyapqiNhSYEO6oC0VYDO4a/F9FbMMnkd7421U1LNvuEWQUTSJrP3y5wiw6j2P7vX1gQ+g7VnL707RpavNkXZhojCgqmEgwrsf4t7DTj5qKEt3s0M1wHmTIuUwnWVA+so178rGdqpQc+/PDDNHr0aOrcuTP17t2bzjjjDFqyZEnYa5YvX07jxo2jXr16UZcuXeicc86hzZs3h71m+/btdOGFF4rnu3XrRuPHj6eKioqY311TU0PXXXcd9ejRgzp16kRnnnlmvc9ds2YNnXzyydShQwexfLfddht5PJmfi45OBdA9mzsW6IY1tQbrpZ9s1dRMoV7UPTGmj9giRNlkuoYyPc1KTat+7Rx0wyFO0bUvEaJpWlHrp6/nuUUEiIyeQoexXe+poLIaf5hpJbcdUu4Cr6WwKBxZxN0ssiMgzKp9eufUi+yQpgjMrVZFNtOmVVl17LGICKHJS7yittDq7b6w2loy5a06yilIpo9NIzA6Lt43j84cGXCtpGGlK9IqU/T8aYmHLnirhp75OXpnPuN+3qmFPaljarTnY2kqo61WREgRjBYpi2gmlTH9coSBjfp6G8r8dP6b1XTay1W0cKNsLOGgDy4uqBdVqEZlSaxOEp+cXCtua3fWLT++77CBOWGGFY5jb0930SkvVYmosmwdl6kEa6oH1lEvPtYztUyr33//nS666CL6/vvv6ZNPPiG3203HH388VVZWiudxj//B559/Tt988414zamnnhq2EfEZCxcuFJ8xceJEmjJlCl199dUxv/uWW26hSZMm0euvv05ffvklbdy4URhXEq/XS6eccgq5XC769ttv6bnnnqO3336b7r333gbTg2EYhtFLvEK9H15UQO9fWFivtpGs61KdwMQi3bj/m1r6v89rhPnz1Kn5EQstNzZLt/jo/Ddr6Lw3Aj3uMRlFquaWiroOcrJznIywyguaTXXPB/7PDaYPmgWTeNSoiRaxE4h6Ci+qHgsZ0VJeG4gaQaH4BcGJtLHu2lmvVYeixc54pTpUI0gui9nvNMPkxR7aWJb6J8Sv/uGi/R6upOs/qqFB/6mgvf5b/6KkWlNNV02rTMDpiNw9cGuFj679oIZu+6wmFFG5Swc7PXd6vqgRlcwxNd7zkUCDhT17OEI18oxRXcYur2pUlwT7uTS/EImF/eznJV5S/ScZBTX5mkJ67ewCcY//I6XtIXpPGl7xePl3N903yUUblHTySGBzPPajS6RifjE38y+CMwzDZER64EcffRT2/7PPPisimmbPnk2jRo2iqVOn0urVq+nXX3+lkpKS0Gu6d+9OP//8M40ZM4YWLVokTK+ffvqJdt99d/Gahx56iE466SS65557qGPHjvW+t7S0lN5880166aWX6IADDhCPPfPMMzRixAiaPn26uP/xxx+FEfbpp59Su3btxGtuvfVWuvPOO4XhlZeXfuH0DMMw2YYs1DtlhZf8EVJCEEkDjOkcX/7joYe+czVIV7xUY+IMt6gnc+oeuXTibrl0/NAcqnCZ67wFgwjRETCIBnXSVxdpc5k/LPoLkQ/YZpisygirukirYE2r0AQ9/HkzXb1UEMFz2vBcemOqi97800Vn7RkuhDRFZq/10YRpLhoXjPaJhmr+YbJ62Ts1NKijnb6/uig8mmRF5GgSjM06o4y0gCgPFK1HVNq0G4uoa4LpnY1BabVfmJgYC9srYVoGDMtZa33k9vjFfiz3U0TJqQXss53ckJEb/nhZDdE7M9yiM+b/HRkoPN6tpZ2OHZpr+piK8amaSfKYmkgq3D3HGFqXWojqUlN7zxiRK6I0YToj3RB0jFCjy5gSbATm8PAHKkV9ub9uKYr4GZIpyzzi+IlRh/06FkjLHDcyVzSLeGuaO+EIVYZhmEwnpUyrSGYSaNmypbhHlBNOVJ3Oun7T+fn5ZLfbhaEF02ratGnUvHnzkGEFkHKI18yYMYPGjh1b73tgiiFiC6+T9OvXj7p27So+D6YV7gcNGhQyrMBBBx1E1157LS1YsICGDh1a73Nra2vFTYJcVBm1hRvA+mDZECmGfFWJfFy+Lt7jeAzPRXocGMMJoz2OQm9YDvVxfCZ0jhSSiNdHW/ZUXqdoy96Y6wSjUz6fKetkZtkTXSdVr0xZp6bcTnIM4jMjLWM6rlO8ZZePP3taHh3wWHVoEgP26mGnZ08NH2OYyPRtG1jGowfZaWD7vNBkHp+t7sdNvU46t5PsupZnl6/xU1GuX/Rnx2LFWqe1O0l0Y8Tkd8HthZbXCa/BbzyWQ339htLA3+1L6j4H5hMmyTBaxDHC4aeerW3UsSTwOTLiCkYG/pcF2fG41e20caeH7p3kouYFRGcMd4Qfy+2+MBPqjBGx9yf8hdpLVS6iTUEzDlFh8rtRYydWjaCFGzw0sION3F50zQt8l3HsSR3l35HWSX18+krog6Lb0A9j25+yxz2Z7rezyhdKA62s9dExzwZ26KV3FlBzJ9HL4/LI6w8sY7L7E4Cexs9Jp+MeHs+x+cKiD+V2cgcdXRhNqLMGSmsCxzgz6/Tc6U669B3Umar7bhhWxmOquk7q8dPsOvl8sSOdcIFBHXsXjwocBFbtCKwT9rvCHHy3zdJ2Qh28ri1twrT6ZYmbTtotp97rt5R56NJ3amnKisB3451nv1Ytfm/UtGHjOp08zEEPfRdo6LBwo4f6tg03WfnciM+N0nE7SR3xf6x1Tad1Mi5jY66TN8q5UTqsk/E1GWdaQTREMO211140cOBA8RjMo6KiIrrjjjvo9ttvF6Ii0gliIJ0PbNq0idq2bRv2WTk5OcL4wnORQO0q7FgtWrQIexyfI98T6XOlgWWsfSV55JFH6IEHHqj3+Lx586i4uFj83apVK1F3a+3ataIWlwR1s3BbuXJlyOwCMNJat24tan2hDpcENb4QfTZ//vzwSVf//mLd5s6dG7YM6EAAExCRacbOBPg+5M1KYFgNGDCAtm3bJup6SVAMDpFwWH+pf7qt044dO5pknbCMWCesW6asU0Nup7KyMvEeqVcmrFOqbCcY9viByaR1ired1i5bROTrLn4CLxy2nc4c3YU6FlbS/V+spdJaBx3Wq0wYVsZ16oB1rW5GROHrhO9v6nXSuZ2qXT1F9YAd2zbSH1UdaPrirdSnaCt1auaJu075uS1DkTtyWXWs0z/LW6NyEbVyemju3MXiMTsFlhNRXVindq419MwhgdevXNmMOnXsRbeMqSV31U6aO7eCal09oI7oLmh1O81fuhq/+uS0ucXyquu0Zismxl3F63PsXnH+Em+d2hZ0pZpcG5XXBKKyPDWVNHduoIbnzM04F8H6Rmb28h10XJd1dFwXXB0jWrs2+tjDWFi2bFncsffpXGy3VsJowIW4VD7u5ee2En9vLUNdplyy+T1UUbYT9pV4fM7ceVSY66dOwbGH1+jYn1BvVf4G6V6nxjpGrF8HI7kjlVYg7bQotJ1W7oR2Xcnm91JJMBJw6gofvfrtUhresTruOlXtWEe3jdxOq/rn0oaKXBrSozmNGtRejL11y2OvE9Yj2jr17NOPiguc9NuMeXTf7+3p782RGx3YbX7atV0N9W/fTJwvGMfettw+geV1uuiff5YltJ1269CVZq/No0lzSql/zvp663T2Kzvp703Qsc50QvTZ2S9vp/vHrI+5nUZ2bE9/rCumN/6ooVN6Lg09zudGfG6U7ttpw4YNGbdOmbidWjXgOsWrK24WW2lpnITrJuKaa64RaX6oM4UTBckPP/wgoptWrVol3Dyk/SFtb4899qBHH32U/ve//9E777xDM2fODPs8bCCYYCjQbuT999+nyy+/nLZs2RL2OCK39ttvP7r77rvpqquuEhv9448/Dj1fVVUl0g0/+OADOuSQ4JlynEgrGHAYDDK9MR1cdfyNH0ZEsBmLUaaKA211naIte2OtE34Md+7cKYxSPJYJ69SQ2wkND3DglXplwjo19XbC52EM4odKfn66r1O8ZZePb6vw0qiHq0VKDIpbtyy00Y//KqQDH6ukhZv8NOFcJx3Q1xF3nfC9cj/GY5kw9nDrelugjtLsWwrpmOerafV2dLkj+uSSfOrXzh5znUprbDTw7sAJyoq7C0RdGSvrhL8RZS0jrCU3feKiCdM9dO1BuXTtgYEUmsH3VNHOaqKfry2kPm0CERax1vWLfzwine7IwXlUlBe4ih5ve+DxKct9dPJLAU0GtLfR91cVhK0TUtVGPxY4aTt7zxx64Lh809vpw9k+uvr9Ghrd105vnZsfirQ68PHwotIqP11dQH3b2WLuT1JH7N9GXSKt64kv1tCfK3300AlOOn0PR0of9z6Y5RWaFTtRoJ+oeysb/XptAXW7LRBpNffWArFP69yf8Bk4d8N5kHyNznVqrGMEajqNe61WROr98K/i0Haat95Hhz1dI46HL59VQEc/E9ASr/v2yoIGWSf5G4TjJy4uq+uElL6DnqihjWV+WnxnEZ31arUYn4ZSXCFG9bLTs6c5qW1JTtjYw9/rdvrp4R899P5fHtq3t53ePb8u9dDKOv22zEenvVJDHUpsNP3G/ND5MO6XbPGLCNNo/Hh14NgZbTv9sMhL57xRSy0KiGbcVBBK/5XLyOdGfG6UbttJ6ojfcuzfmbBOxmVszHXyRTk3Sod1goeA/Qk+ivQ/MibS6vrrrxdF1r/66qsww0qm5M2ZM0dE/UB0HKj79u0ruv6B9u3b1zOf5EEdz0UCEVNwLuWPpwSfI9+D+7/++ivsfTLCSk0ZVEEYn5rKKMFy46aingQZX9vYj2OwGR/HQJMTMyPRlj3V1ynWMjb0OuFz1q1bJ3Zi9TXpvE4NuZ3weCS90nmdUmE7SU2jLWM6rpOZx9s0y6EFtxeLq+AnvlBN26v8ouU56pCATi3qjtFyGdeX+ui3pV5h3hw+KGBQiQlRUEP5unQfe65g2gyo8dhoY/C6Fgw+GCmoXRNoLR/5O/ORRhjE7XNQfp7N8rLjSh9OzNTHUXAdtC+xhx4PFFT3i0grM2Ps2KHq90SucxRpGXdWe8OKshuP2b3a2umEYTn00WyPmGxa2Z9qgtXh83Pr1muXjqgR5I5aI2hAx8inbkYNIukYaVlQrwf1uMA+vXLIYWydGWXZm+oYUZgnjY26ro25OQ5RYBvn2kjA3FRB9MdyL7Vv5qd9++QkvT/hBDyanuly3MPjcv+U+7ncTv7g7oBND3Pl2F1z6NO/PdS5Rd24bIh1Un+D1MdLCvxUUeMX4x8ptzLlLhKvnZ1Phw3MjTj2YH7t9b+6q/ydmoevj5V1GtnTLmqkwUhbsd1GfdvVfc7KbbGLqK/eYRP7dSQNwEED7NSpuUs0l5i0wE8nKumHxnUyPs7nRnxulKrbSeqYSetk5vGGWva1MX7TU3mdor3GKilVaRMTABhWX3zxhegOKI2oSCAkDSYKCrDDXDryyCPF4yNHjhRO5KxZs0KvxWvgHA4fPjziZw0bNoxyc3PF6yQId4NRg8+Tn4u0PtUQQ7F3OIYIv2MYhmHSBxTARXcq1DdCLZ/lW32hGlcdSur/NC7YEIiIefTH6K3iM4FaZe51zQfVoSLmsVrLq+Qrcy2dne0wUQQdmtVtmwEd7DS4o51ygudDn85x00GPVdJ/vgosH2pYoSgyuuIZrzRaQRZ0B8XO+mYXzDNZs8Zp6HYWj1p35A53MAaNHSzx//NnBKJEHvm+VnTOe+i7umjuRPlrtVdsd0TZoCZYqiNrWklgJMi6QwD7899rvXTFxBp64Nvk9ckkere103+Pd9LNh4U3C5DmKEwrGLMyRbBQMZ0bE0zAerSxh8ZnnFdHfQb7K+q0SWIVUDcz7kb2COyTMNJ0dlBEs4AzR+bSmH6OsOVlGIZhUjDS6rrrrhOpdm+//bao+STrScEYKigIhCe/9dZbItcTphU6+9100000fvx4EW0F8NzBBx8s0vkee+wxkYZ1ww030IknnhjqHLh+/Xo65phj6PnnnxdphQj3Puuss0Q3QDiYyPe88cYbhVGFOlrgwAMPFObUxRdfLNIFsWzoRoh0w0jRVAzDMExqg4lCt1Z2WrYF7dBlxAu6u9V/bUHQVMj07oHSaMK06Y8I0Q1qa/lIXcEw2YSGSMPT1dkOXHeQk1Zu99GgTnWTzvcuDK9vg2is+Rt91DeYhoNtdeKLgbS+Ff8pph8WuSnHbhMTQ0TnmAVF0iWY0Mcy+1TTLhbP/Oyiz+e6RSc81XiRtC6y1+tgqepd6yXROU++Pxn+CI79vXshWin1J8zN8om6tLBRWQ10sVOftoHtDQMaJiuC1+R+ajS4sh1EKhq7XwKPT+73fjrphapQIwBEW22tqApGVzbude6ere00Z22gE2kyhlCfdnZaX+ql8/bOoeN2TW7as29vhzCscDt/H70dFP91YF5a7H8MwzCU7abVyy+/LO6POuqosMefeeYZGjduXCgC6q677hLpfigYhsgsmFYqL774ojCqYEwhzA33Dz74YOh5GFn4HNSkktx///3itTCvkCoIkwqF1NXQtokTJ4p6WqhfVVhYSKeffrowurIBGHmMXlhTa7Be+slGTRFxM/bZKpH2cvfRThFZsmwLig4HZkaoVxJp4lAQjDiodvkzWsM2xTaafnMR/bDAQzd/Wmu6tbzR4INhVZVgpFUkTQ8dGP90JdgATUwUgeweKNOELnwrEIG16M7iMCMqHuprI0VaYUy9+WfAJXFHz2IKA+mmSMnbp5eDTh3uoF2iTGox2Y2kszTHamJkJZkdm2ftmUs929ipY0l6TJhH9sih6TcHmtmoyO3t8vqpOjj2pNmsg0zb11WGdXHQ7H8X0UUTqoXxEim6EiaqbmJpCkMSVLhQs8ohzNWgt2baENpW6aMlmwI75at/eMStLsXZugl32MAcYYjC+DaCz4ROMPUjRUfGI1HDKpPHZVPBmuqBddRLsyzXM6VMK6T1xQOGFW6xQP6sNMAi0b1793rfhSr7Dz/8sLhFAyYZIsGyDRh2KGTP6IM1tQbrpZ9s1RRpZjNX+2jWGh89elJ+cGLkVUyryBOZSJFWmaghos8QxbJXL0fC0Q0X7pMnIl5kMWxL35+Epp5glWZpXuQpq1CtZHXmWJyrqil/F43KjTnZPG6oudOqFsH0K6RrXT3GerS2jCCKloJpRcd2zVCTK6WqRSTEvw50ioghpGrKKD+1oHUyZMq+DjNvWjAa6MD+dWMVkYc7q300fZX16MqG0hSRVmDlNl/AEJpQTb8v91kyhC6ZUBOqVajDhMP633RoZA3iRUeaZd1OH30wy02X7pcXN904U8ZlKsGa6oF11IuD9UytmlZMaoJ6YGiLaexKwCQOa2oN1ks/2arp3+sC64tiw6jX0qOVLLQerJkUJdpEmgQygiPTNZTpLsaa3Ph/VO/Y0Q3XHoyaOU5hhlglkqZbK3z09Tw3zV0XHgFy/pvVtNd/K2jKco8h0ipY1NluCy2/GvWlRmCZQabuoebTgA6R31wY9LLW7jAXXdY8aFqVJZjeJ2tgRUvBzOSxGY1L9suj8Qc4hXmgO9IqU/TcWuGn016upgveDKTNqsBoiUW853VrKo1x1BsUhtDFRTT5mkJ67ewCcQ+DKFa0FMwjpDmq0VlGE04nGHOHPF5JL/7uFt1nEzGsELV57HNV9MA3Lvpmfuzi7pk0LlMJ1lQPrKNefKwnm1aMuR9R7CjJFLJlwmFNrcF66SdbNf07aHzs2jnw89e/vZ2GdbHT5fvn0pxbi+j2IyNHvRTk1UVaSc0yUcNV23x05xc19PyvrrjFwBuCSJqirs35b9bQtR+EF4DfUOqjVdvRZSzwv6x9o5pS8u+qpCKtAuaHHAPG9CPUAKoKmkdnvlYt/sfjZkyrueu9woyDMWeF/DiRVmbHJorXPzm5lpZs1juBb0hQy+vwpyqp483lNPLBCrrts/qNAWRknUzrTZZM2delAYuaaOq6wMD57G93UrWjdGvaq42dRnR3iDpS8jUwgpCiZ8YQaigTrsrlF4bSS7+HN+WYs9ZL/2zw0fcLPPVq1JkFUZun7B5wWt+a5s6acZlKsKZ6YB314mc9Uys9kGEYhmEax7QKTHr27ZNDX18R/6dQdtHC+QLqCOmslZNKrN7ho+d/c9OA9nYRuZJIusuWch+V1iDtzEYlUQqXW2HOukDEQZHBT5SGlDsYSiHrSammlNMRrK8VrEWG56zWjkFr+ydOyadtlX5asdUn6j+p6UeJ1ACSptXyrX469Mkquu2IQJSQ1UirZBsDvD3dTb8s9YpaXVjPdADdImFkgjU7/LSjKrBtl27xidplvdvoj7TKFNDpUh7HEHEkO2+u2uanj2Z7qNgZGFOJFhPXSZtiO312Wd0+hK6gOQ6bqMHWpUV85znZjn7RQFTuuW9Ui/TjM0bkhn4bZga7HO7RLbmGBqePyKXHfnKJYu9IjZS1vRiGYbIZPhIyDMMwWQGuUMn0wKFdrE3AMPl95rR8evWsfMuROumE7ILnVCb7VqIbwGXv1NB+D1fSj4vip7fEQkYxPfRdwJn5c6UvLIoJnQDVCKuivEB6pzSEQG6wJoyMtJKTdKu8PMVNN39SKyKjjOlH6gTfbPqRsUNlvNo1RtoW22hIZ7uIRkkUl8dP01YFlhEF4dMFY4dGqd1Fb1XTEU9V0ey1Xjp+WC49eWo+HTuUXSsVNQIIdeck3uDV+z5tbY0eXWn22P36VDc98ZOLKmv9DZ7iHIvebWzUqblN6Dc9uP+AGcF6YMO7J7cvdW1pp9F9A58xYXqGt6tlGIYxCUdaMXHBFSMUt+dWvPpgTa3BeuknGzVFEfbN5X6C1zGwY/hM5pZPaghSXDUmL2IxdtRHwkQ40zWU6Wb5Fk2UiFFA4dkzplA1jRfFVBdpFbi/aoxT3FSuPziPXB6iFsGi8LkJejxbywNfslOpQWUm/Shah0UUYm+eTyIiDVhNJxrVO4e+vTL6m8yMzTnrfCIKDYXLUeMtXcB2h/EgzULZ3VEakm4v0eBODnHTRabs62pzAhjUhcGUV6mlM0dPMXGdmsJcXbHNR5WuwHaXBdrNkGxHv2jLjZTF9/7yiGioA/rm0KKN3lBtvT26Jb8vjRuZSz8t9tLEGW668ZC8UIScrnHZGNs3XcmUfb2pYR31YmM92bRi4mO320XnREYfrKk1WC/9ZKOmSCNCdAqQKR0AtZLemRG4on3oLjlROwhmg4ZIfTRGWlklVG/JY732gtRURjEZUaOYpEnhjVGO6Zy9ArPysho//e8EJ9ktnvAhquvCt6pp6dbAutz0cS19NscjJsPJpB+hoPvCO5vR6a9U0eTFXsuRVjrG5h/BSfZePZJLZ2pssKyIfKyoDTdi8hTTSjeZsq/D9MGmRmCVW3TbtIWZVjKKFEZGNMO1MTV9anIt3f+Ni7q3CiwnUuXQ6dAsujr6Gdmvb44wrSbNc9EPCz20cFNduOX939TSS2faYxaJjwd+hxBNuaXCT98u8NBRg3MtaRhtfXE8w8UA9diKaDQcz5JZ3kwiU/b1poZ11Iud9eT0QCY+6FSwevXqrO5YoBvW1Bqsl36yUdOBHR307ZVFNGl8YdhJ/HcL6lIwTn8leiHtnxZ76MNZ7tBzmahhXaRV4p9REKezXSykpiu2xnYeMCHLDaYHyppWsUBtrXEj80S9GCtggjd9pS9itJeO9KNad3h0mi7MjM0/VqRfaqCxmyeQhh/qHQGYMVNXeESx7PWlevbNTNnXYfihzpuaChzWebMRh4IZTWGkYPdeEYxq7Ns2sWmL1RTneAwORuou20phhhWYvsonjg/JgMiqU4fnimPphmBnWzMaypTq0Y9WibpbuFd/z9A1Uu73xuMZk1n7elPDOurFx3qyacWYqyWwffv2rO5YoBvW1Bqsl36yWVN70OyQpsS2SjJ1En/rpzV0xcQaUTw7UzWsM1GSSQ8MvLc6WPzcClJTGVkRDUQQdGxuo15tbFQUjJp74qdaGvtMJb030x0WcfDnSk+oWLcVQjWr/NGjvZLtsFjrSSwdEwWa9/xvBR3wiGHwBok3NmHsTA+mXu6dhqaVavLJ9EAZaQUD5tEfXGLS/keEaL1EyKR9/fajnHTfsc6w2m8y0ipKFlqDYEZTY7Ri3xRJY73ts2CYXwTM1LQzw+X759GcW4vpwlER2pZG0TBSSvWU5V7a+7+VNOCuclEX0Ojxq8uLG8zeZJc9ncmkfb0pYR314mc9OT2QYRiGyQ5QG0VNLTGTgqZemQ9Ed/hDnegyuhC7hkir6iTqsKPGEqKYMAGL1sns/uPCzZblW300Y7WPDhtY94ZrPqihWWt8ovtfm2Kb6JI3wmShZHM1qxwJpx9d8nY1/bXGl1A6JnzX1dv9lJ+b2FiE6QUzrmUhiU6R6QYK7qNzIEAaFZDpoqhhxt0Do3Pe3vVNEGN6YKqgdupMFdMq2u+GlZp2ZmgZrMOX7HJhTyiP7rGFuPTtmrCoMU4bZBgmlWDTimEYhsl4Npb5aOSDlTSoo52+uLxQFFa3Wki7IDjXSySCKF1A+txBAxxU5Ew+0kqmGiaK1SLKMsVJdhUEsoDx3HVeevF3t+j89dv1xaa+30rNqkRqAP0T7ES4Zw8HdW9lTyjSCCmYuPJqtSYVoi2eOiVfRCmpkYfpwmeXFdV7rC7Syk/VwWC7AqV2HROdo4fk0F49i5KqZdcQtG9mE2NdphrLqLqmJN7vhtnjhxX+XuelgR3soRTYRJZr/AG59PTP0XO2F2+OnAYNU55hGKapSYHDP5Pq4GS4Q4cOaVWoNdVhTa3Beukn2zSds9YnCjRj8gPDClgtpC3r6MgJcSZqiKv7LQuTSxcb2cNBF47Kpb0NaXNmgJat23agx35y00X7Oi1FMXmC3paMuFGNDHQeCzxnflvJmlWxor2SAXW2EAeBNCAUmLaCmr6J6DhjTaxoYzNyIWZ3RkRUHLNrLg3q6BC3ardba6RVJu3rMHDLa/w0qJMjlCLYLN8mbo2JGU23V/nD6pggGujNqU07XuP9buDnBSm3uupnyWYNr51dIOpyRdOwR+vYn3Py7rk0e42v3vEscBQKGNlmIo4znUza15sS1lEvNtaTa1ox5joWYEfBPaMH1tQarJd+sk1TXKkGuwa7BwKrhbRDaW/BCKJM0LAhapgcPCCH/jM2n46M0vEqFtDy48Ut6X/fu+nE56tEFFG0IsqoYXXgY5X02h8uQ6RV3WtyHeHRcbkWN1WyNatiIQ2DndXWI9LUQvmRCt5HG5uRat5kSiHmE3fLpRsPddLQLo7Q9k6mNptKJuzrkvETa+jEF6tpXjDSr6kwoynGq7xIkCrjNdrvhgSGlY7jg2SXDoEveu7X2nrHalVDM79nkY5nJQV6IssyhUza15sS1lEvdtaTTSsmPl6vl5YtWybuGT2wptZgvfSTbZpOWe4J1cJJ1JSQqUbVrvTXMFqXqYkzXPS/72pp2sokClIlwYotbnr4+0ABlkv2z4t5VXFTmZ8WbPTRxjJ/WKSVOmmTNcyqQpFW1pYH0RyI9pp8TaGIdMA9/tcR5dEiaFrNWesVhdGtADNOrmdNsJi7SqSxGSos72uYwtGNyUPf1VLHm8vF7fuF9cdqKD1QU6RVOu/rRmT0oUtZFXRbvHdSLX3+dwItPxtIUzlejaM7FcZrpN+NAR3s9OmlBdqOD5KjBgUG8dQVvnodAY0aYrm6t7RF/T1Tj2fn7xNwvkurGy/NMR3IpH29KWEd9eJlPTk9kDFHeXl5Uy9CxsGaWoP10k82aIoT+4snVIsTfvDEZDfNXO0LpZfIk3gzKWjGSCvUAPl5oZcOKPTRLh3TK30iWsTNks1e2lwBgy6PRvZI7BQBHfHQrQ9TnfYl5idviKq67XMXubw22qeXnU4cFvv7pQElTRjUMlLrWKkT9KrgNku00HQiNaviURI0rV75w02XH5BHnVuYnxzCzEO0FdIeI0VaRdq/rdZwS2VWbKtz3iprA+u1tcIn0slaFdpC9dQKNUVaZdLxUtaFQsF6CZoVPDXZRSfvnkNjd228wlaxNE3l8WrldyNZ7v+mfhV1GW028XxnmIZYrr1759DybW46bmgO/evAvIjLhcfmbzC41wZ0pUGnI5myrzc1rKNeyrNcTzatGIZhmIwF5syfQcMqVoFZM6YEipSP6p1D3VrZxJXuQF2gjkS/1qRVXaBYXRNhWIF8pcuiVSbN89Cl79SImlYfXWK+iO9X8zz042If5dj9dP8xsaOsVHNKRikhEq4kP7zzoUwPlB0frdS0amgCNa0CGGtSmU0bMqZOxcJqDbdURtaXU02Yh75z0Rt/uumGg/PowePzxTZvHewsyNTfb1xKdJ80fFNo90iL8doQZrZKvA63xuLpYHNZ4LF9YtTVwufKCznR0JUGzTAMowM2rRiGYZiMJN4Jv9UCs3v2yKE9e5AwrKLVBUqHTktmapQk00VMGgqR0tYige2wcKOPbvssUKfm5AE7qHfb+t3hjMioKVnL6sVxBRG7ovVtZ6etFX4RYSdNrFSgUNE4EZPw88vja6Qia95MMaRcpWNEhZr25wxql6ukvaHoNBMZaeqq6YGh1NoUcq0auhFCOhA/2syHyyZhbCoPvKd9M3vCn3voLg56/ZzU/y1jGCZ7SNq0qqmpEVdDnU6nniViUg5s365du2Z1xwLdsKbWYL30kw2aNkR6iW4jrCkwE6GQTAFrGTUka39FI1InO0yoL9iv2NS4lCYFukJG44hBuXTEIBJpj91b2alj89QZ7+fvk0cPfR8QadV2Hw3UmGIabf9GNODwByrDUgrTMaJC1pdTTRijiamTTDpehvYbJT1Qdo5rTM/KjKYYr7gYgGNrOo/XhjpW92ztoLZ54RpuDppW7Qz1G618brxjdyaTSft6U8I66sXGelo3rX799Vf66quvaOrUqbRo0SKqrg5U8CssLKR+/frRnnvuSUcddRTtt99+DbG8TBOATgWtW8fppctYgjW1Buuln2zQVHd6yZrtPvp4tift6wLFimAoyiMqqwnvTpeooRAv0ipSXS0YUHd8j2LG8dMsZU0rGSUSi77tHOKWKsCwO++NugrIBz1eJbaJrhTTaPt3sdMWqmX06ElO2q1rekasFOTUL7Yv095Kq/2iOHthHlKk9CQUZNLxMi+oU21YeiAlVfOtoTRtzNpRqUi8aLMBHTG+6zT0+vwh08rYdMTM59ptAQNzuVIzLtvIpH29KWEd9WJnPc11D3S73fTCCy/QrrvuSmPHjqV3332XmjdvTqeccgpdffXVdNVVV9FJJ50kHps4caJ4zZAhQ8R78F4mvUGngoULF2Z1xwLdsKbWYL30kw2ammkBboXvFnro8Z9cKV9nxQzRuiZ2DXaeSirSKugTRCsQDr6Z747YyQ4TJkRVLNgQ/9yheb5NTMyaBYMubvy4hk59qYpmr6kb01vKffTPei+t3ZlakzAYdn+tjlxrzSxXTqymfR6qoJ8We0zv38u3+oTGqP116h65aWsAqJFWsti+jCBavcNHZ71WTecrpmCyZNLx8sTdcui2I/Jo966OeqZVY3ZTt6IpxulhA3PSdrwmQ6wOt0YNt1X6xf6NYIw2RbGP4ZE+d2T3wABYt9MvGhtkI5m0rzclrKNevKynuUir3XbbjVwuF51++ul0/PHH07Bhw2K+ftasWfTJJ5/Qww8/TE8++STNnTtX1/IyTQTSQBm9sKbWYL30kw2a4sT8/DeradpKX9LpJbJWU8vCQDSS8Qr13jEK36YaMoKh483loQgL/D/m0Ur08QsrZp54eqDfVEpgtFotuxiLtRg4d+88cZPMWu2lfzb46LL967735SluYTQeOSiHLt4vl9oW26lXm6Ytlq8rxXRjmZ9WbPPTziq/6f27rMZPvdrYqE2xPa3TDIqUihSIqFIj78pr6grz6yRTjpdHD6lf78sXzA9szEirTNK0IYkVbYYJrKohfpc6BVOg4zWdiPa5X8x1U5+2dmpZmL7Hh2ThcakH1lEvNVmup6nT0muvvZbGjRtnum4VTC7cbr31VnrrrbeSXUaGYRiGSYiWBTbRzj3XTvTfE5JLhyoITo77tbOLaK0py+tcq+6tbGlXZ6XaXWd2yGi0F8blU0UtUe+2dg3pgeZSAiPRo7X173dHSHGSUTjoTIgbokyeOrV+wfZ0rLUWMgeV7WimmcDv1xeHTIp05ew988RNRUZaYeKeaEfGbOXiffPohGG51CpOdA7TdCC1t6zGR8u3+qP+hsFsmnlLMfn9/oQ7IEYyNWORrambDMOkoGl1/vnnW/7gyspKKioqSui9DMMwDKODjeV+UScJRsZJu+XGvfpsJtIKn/fkqQU08kFEJQXAybqOWkSNCVJJ1PQgTHR01H1C2t7pw3NFhzd8pozoiRZhpALzbHCbKurXznrnKk+wRo+aDpprOMtp7EiShqy1JlM4Y6VhRsOO0MAMY7cuDrpk31wqryVatsUX2l+ZcDaU+kSHuTbFNurSIrBDtC+xU/uSpl4yJhaz1njpqvdqaER3u2gwEYvGiKKMFDWrsy4fwzCMiumjyoQJE8y+lLZv307HHHOM6dczqV/8rVevXuKe0QNrag3WSz/ZoumaHYHwm04tbEkZVgAmDKh2o1ZS+JXsqSs8aRe9sq3CH5aaJiNUkqVZvo0eOSmf7j02P2zyFC/CCOzVw07PnVFgalz+sNBDY5+ppNs/rwmryyMLcqtFpyXJjoFUqrUWq3ZYtuzfKvv2yaE7j86nQ3fJCdtfdZBJej73q4uOeKqKXp/atDVnM0nTxqBj84BO60v9DaphZa2fXvrdRTd/UhMzYitS1Gykuny4WPHNfI+4Twd4XOqBddSLnfU03z3wiiuuEPdIE4zFxo0b6dhjj6WlS5cmv3RMSoBJR0kJX4LTCWtqDdZLP9mi6ZodgZPursGIgmSQaW9Ix9pUHnBIhnS2k9MRSGf7fK6HBnSwp02KhBppNf3mImrmJHpyci3l2G105shcYT7pJF6NlNfOzqfDBpp3GrZX+WnGah8VOusi4OqlBxrOcpAmmgogGgGTO9SwSrTWWl2kld/U/u32+mn3+yupRysbvXVeITUvaHoDL1Fmr/UK4wV8Pb6QhilFxWW6pM5Iq0w6Xkoj16V09/xugYfmbfDSPr0cNLKHno6L2aRpY9AxWKsKtezQJdBht9XT8OHva+nnJV46f59cOm5oYq4trjPc+WWtuJBx1Zi8UI0sNRUQdQ/j1eVDJF86RmLxuNQD66gXG+tpPtLqkEMOoSuvvJLefPPNqK9Zvnw5HXroobRixQp66aWXdC0j08Sg0COK6WdzxwLdsKbWYL30ky2artkeMJdkVzwtkVYuCrUVd/oqRN2kD2Z56NJ3amj0o1V00gtVInUi1dkajLTav69DpAlhsvLANy66+6taqopQRN0KFbV+0blPpuxhkvV/wYgoIzLCCIaVlXEpaxh5gi+VhfFlQW71NRL1uaZEFkGefE0hvXZ2gbjH/1Ymc6GaVhFqh0XSEcXtsc0XbPSJ7oHpCvat6z6oG0tHPB3Y59bu8IkukVhPtQadDjLpeCmNXGnygknzPPTgty76Y0XjrV8madoYtG9mE8dKHOe2BI/dRg3nbfDR9FXeqM0ZzFCYZ6MB7QPHIdmJFfsc9jH8vp37RjWd+0bssFwYW2YjsVINHpd6YB314mU9raUHwpC6+uqr6fXXX6/3/Lx58+iII46gbdu20bvvviu6DDKZQzbvJA0Fa2oN1ks/2aDpWhlp1TL5K7udW9jpgeOcdMdRzpBptXxnLv2pdCZMlxNzaej0bmOj7q3soUmszHCUUTyJssf9FbTrvZW0crusM2WjS/fLo/bFRLt1Dd8Wxggjs+NSRlTJyTcmdLiFF2IPXw+jidXUICrvsIE5CUXntWuGbWeLakAZdVy8OTBO+7ZL786BmAwv3FR/nzvj1Soa8UAlvfmnm+471knjRuitxJ4px0u5D9QqZqcnuOM3dvZspmjaGOAYCuMKrN/pj6jhpjJf6NiQDEO7BAbJnHU+Sw006ghEYqkddo2RWKkMj0s9sI568Wa5nqZjgHNzc0UnwHPOOYeuueYa8vl8dN5554nnpk2bRieffLI4Cfrkk09oxIgRDbnMDMMwDGOKNTsDZ81dNJhWSG87Z69A+Mb1HwVMqe3V9SfG6ol5KqcKHj8sV9w++9tNd39VQ/v2rjslcCaZISTT8BZt9IqOVvL7YNDgSr6OjlPSkJITbnTNMrJLBztdOTqP3pjqotIaGFrpa9YYuXK0U9zMsjho9KD7ZboSrZg/9rklmwPjAKm65+2tMcwqw3DmyHRaxfgI/plJ+0empgiiptX6Uh/tTvWPmyiwDzqUJLePD+1ip7enB9JwzTTQkOCiAS5CENm0dEhlGIaRWDotzcnJEVFW5557Ll133XWiQF+3bt3o7LPPFnmWH330EQ0cONDKRzIMwzBMg7XPPqCvQ9TuQa0pnWwOXtHOhBPzSfM99PFsj7iSn6xpJTtKbQuUG6ILJ9TQ8G4ueu2cApH6BsMqUpv1RJCpfmqak5EhnR3itm9vB81a66UR3VLXRGxolgQjrfoFU3/SETPF/GONB6Yu0sqlRFrJiBhjcwAmtejU3E4zyRdWjF2COZmMAG5Xkpz5OCwYafX3Wi+t2Go+1V1GzcrU82Q7pDIMw0gsn5ZK4wpRVjCu8H/nzp3p008/pe7du1v9OCYNQKeC/v37Z3XHAt2wptZgvTJf04Zqnz3+APORKPHApGDKcq/oHnjX0fk0doiHrnq/Nu1PzFsFC6RvKPWFutIlmj4WKY0ExdIvmVBNH1xcpHVcGmtaxWL/vjnili1E0lGmB/Zrl77GnZl9Csb3lOUe6tbKLmq1ZeLxUkdNK5e3aU2rTNK0sbhkvzw6dXguDepor6chGlNIw7ZdcXK/PahphVqNO6vrIvOi0aeNjTq3tNNdRztDF5paFwV+v1EjTW2qKyOxUjkCmcelHlhHvdhZT/Om1WeffRb2/3HHHUezZs2irVu30vjx42nOnDnipnLMMcfoW1KmScnL41B73bCm1mC9MlvTWEVbUaA6VTjlpWpxEj7730V00u659O4MN/25yhdWuyMdTszBua9Xi8LV6PIENgSv3icaZRUrjeT35T7T6ZJmxyWWE/Wcipx16wOv7ZGT8kOdCtFJbmOpXzyOtLFM4vuFKJ5dS7t1ddB/j8+PqSMK4S/dkv7pgRg/mAzj2GDc5zDRRiHqshqiE1+opqvH5NHNhzkz8niZDLt2dtA1B+ZRfyXiztNEkVaZomljsUeESFGpoYyywrEvL47RFA+8f1AnO81Z6xOpoyO722naqvCIK/k7J3+faz1+mrbSE+o+iQtOKN6+cJM/4Q6pTQWPSz2wjnrJy3I9TZ+aIgUQV15xpRmof994442hvyV4fseOHbqXl2kCUL8MHQuGDBlCDkdqT8LSBdbUGqxXZmsaq05NMrWhymv8VOnyi6vOdg21WvC7hg6ClS6YIQENrxq2jJ609RamTFOcmCeTTrlwk5dWbffT8cNywiOtEizCHi91y0y6pJVxicnRojubib9xDvLNgkC+00Pi0n5gHWat8QoDA1EDX1xeSJ1a2FK63brVDo3/rPdR83xbXB1h5KBDI7Z3Fw2dNJsSTIZhZuPYoO5z5++dSxe8VdcAQWf3wFQ6XiYLUr9k+pfEJztvNuKukUmaNhWqhuhq26m5jVonGWUlefa0AnFBo8hpo+2VPpq2KjyqWP2dQ7fZofdWUEUtagsWiTRGHGePG5YrOtKCgwY46K1zU+cCVDR4XOqBddSLj/U0b1p98cUXDbskDMMwTFYSz+zA5DQRYwa1mq56r0bUtXr3Aj0nywV5NmGE3flFLR3Q10a7Ffpo4gX59MLvHrr7KxcN6WRvlMgwHemU2yoDuvcNFkpH7a/PLiuodxFKV+pWQ6ZLykgRYzFpWawdqVCHPllF/xnrpAtHZcbVSqRxghpP/O2F6IsJ56X+hNEMGN/Yx4yG7dQVnvB9NckOmNnEbUc6afzoPNGNkkldcCEGv2tl1X66wHAc272bQzSjSPT4baS7Epnat52DTh+eK445B/TLCe1zvmDuH2oVInJv5mof/bTIQ+NGBpZtWTC6syk6UzIMk6Wm1b777tuwS8IwDMNkJfHMjFs/q03ImFmzI3DCjKu+ukCkFUBUz/RVRBOCWfD79MLPqYs2lOmZMDR0OmWN2y+uioO+wXSxGjfRiO6OBkndauh0yTDTylG/fo+xDlYmICPisN2yEWMxf3RMO3NkLr01zR22rzLhICoGacEwd3u1Cez7ssMnk/rRlbgQg2PquXtHHuCJ1iOMBVKQcfv8bzc9+4tLNLbof4iD9nqokuCRvXVeAR3YL4dmrnbRT4u9NG4k1TOt5O8NwzBMIvCvFMMwDNOkSLPDDNKYMcPaHQEDSWc6lBq90a5Z3d9y8oeuSaXV/kZJp1SNIWM6pdkoK5g43VsFln1HVfLLDUMx0PKcGjxdEhPvU1+qErWs1GLsaooT0gJVGjP9qaHJz60zIOOB2l6ZDmqWPXRCPu3f1xGKimTq8+dKLx3wSJVojsCkF/jNgWGFY/2WOB36dHDfpFoa+0wlLdkcOMDuqPaL8TNnnZfcXpifgRsiOcf0D1wh+GWJRzyHiC9ZR08abir4nfpmvsfU7xXDMIypSKurr76arrnmGurRo4elD1++fDk9/vjj4sakL+hUgBzabO5YoBvW1BqsV+Zr+tjJ+TTiwcq4r7NS50pGWnVtqTHSSsnIaF9Sp2GzfBtdtn+uiPZogAvd2mtHSdMKnQP7tLPTd1cV0s4qPz3/q4u6tbLREYNytaZuNcS4dHmIflnqpWZOY3pg3d+5hpwU4/+ZEGmF+mrxdDzuuSpat9NPL50JUzGzuyiito/uSKtUO14mgzO4O9YqXsGnc9y0scxPh+ySEzLgG5pM0rSxcNht1L6ZjdaX+mn9Tj+1b1an4W2f1dDf67x01RgnHTxAzz4+baVXdH+9+6tauuUwJ/UIXuBAbTw0uECUFRpitClCrUCbMK9w8WPmaq/oUloV3BeRWigjehuqU7AueFzqgXXUi531NBdptW7dOho+fDideOKJNGHCBFq7dm3U165atYpef/110V1wxIgRtH79ep3LyzQRLlfwl4fRBmtqDdYrszVdvT3gOjQvILr18Dw6fXhOUsaNalrBhNFFoRppVWwL0/D2I/Pp4n3zqCRCYWyd6KgdhYgwgIkGoscGd3LQ5go/3fllLb36R/L5ZjCqDhuYk1BKoNlxmRs8g3H7iDxocUX1O6DVi7TKoPRAacpEMq1UHVF3ZslmnzAq2xZn7gkvOiRiwrw2uN/rrmmVSsfLZJCd5VxKLbRX/nCLfX/BxsaNeskUTRsTFFsH64ONM6SGf6/z0fRVPqp26YnAgrkkf0O/X+ilgx6vov9+G8jxW7O97jksDxqdwFAb3S9wgEWKYKsiGy3/TzH9cUOR6Oh62f55cVPbUwUel3pgHfXiynI9TZ29fPDBB6IQe35+voi6gtPXu3dvGjNmDB1//PHCoBo9ejT17NmThg0bRtdddx0VFhaK97z//vsNvxZMg3csWLRokbhn9MCaWoP1ynxNp6/2hiJ/7p3kos//Di+qbNWYwQQWkSW6I63O2zuXZJ3vts2oSTSU6ZTGoCGYNegQZ8YoQjRY77Z2kVIlqQ2aH7hyng7jUhpQSA2UkVaIslJrutSraZVBng0MVHT3wi2WjtgPYGzBwMvkQttIBx54d4WoK3fLYXla6zSl2vEyGWRdN7c3/HgJGjMQMZM0bUw6Bms0bij1h2m4uTygY7sSPRsR5hKi71Rmrwt8R42HaOaawADqovy+jukXOOD+uMgTimxVf2N0pLY3NDwu9cA66sXHepovxL7XXnuJ29atW2nSpEk0bdo0WrJkSSiSqlWrVjR27FgaOXIkHXbYYdS2bduGXG6GYRgmg9ilvYOO3TWH9uvjEIXXK1xEu3e106w1PlJPm80W9cbJNowMTNCQTqGLsbvm0hf/eOizvz1hNa1k3aClm31U6yEankRBczMgleLiCdU0ZbkvodpRmFz8dl3dKcDrU12iI6KadpYuk29s5w4lNlp3X7GIulIpdtrogn1y6eUp7oyLtOrayk5zbyuO+7rFmwOiwKTMyaD0SCO5OXXjAilSTGSkKY3jlESaCJk8PjKFjmGRVoEDGupHbSoP/FIiZTBZpLlkRDWbpgSf7xxcHjCmn0NESkvzSi7b9io/VdUSrdjqSzq1nWGY7MTy9dQ2bdrQmWeeKW4MwzAMo4NDB+aIG3h3hlvU0Th5j1z6Z30tuZRzZ7PGDCJuUGMKNTWQtqCTTcGrz0gPVEGr7wveqqGhXew06YoiakhQ++PDi4voyonV9O0CD52zVy79+/DEi52j4xqunjd1pJUV0P1MEjAobeQ0zNeKnDa655h80Y59zQ6/MG6yDWlayZoymUooXdQbmCg3RBe1TEDWdUOxbImMVFRTa5nUpJMSaSUpr63rImq8mJIIZtLvpyyrH2nVpthOV4wOGMZ3flEjUpLHjcyl458PFP3/enxh0qntDMNkJ2lyaso0NQ5HBl2eThFYU2uwXpmrqbFo97CuDmFafTbHE2ZYYa71zvkFpoppo0g6akzpBrU8cBJ+xohcGtXbRptW1WkoDZHlW3yNNml+8tQCLZ+DtExJU0damR2XMtJKGhXq/0bO2lOpoJ8lSB0XB1Nu+mW6aaUcFxChObiTPVS/KZOOl8kiU2bRyMAYQdPYgVaZomljcvjAHGFA9xYF8/1Cw83BKKuSfKJCDV0z45lHbYtJNB/BxZNox5XP57ppfSnRPr0cIqUeGaiIEkNq+x8rvOJ/qxHUjQWPSz2wjnpxZLmebFoxpnYS1DFj9MGaWoP1ykxNo3UROmZo4KcJJ7Zg7552mr3WJ+ryoGtRn7ZNZ6q8NMVFL/zmpitG59EpezipnaJh91aBzoG46o1C5201piVGYmOZT9QOQTrIQRa7RV3zfjXNXe+jmw8LdJpC0VxJfk56jEuk+iGiDjcU8n/0R5cw3+4/Ltys3FTmE+ZnxxJbxqU/nfhCFVW6/PTWuQUiyiGSjjLSKvNNq7q/j3qmiubcWqQl6iRVjpe6aF5go4v3zQ0zp0PpgY04RDJJ08ake2u7uEmg4e/LAg5kOw2pgWrdRBRIV1MChbnUw04fXBw9knhjqY9OfqlKGFbg2g9rQ2ZoRW0gtf3Ip6po9Q5/QqntDQ2PSz2wjnpxsJ7mCrEz2Q0iBsrKysQ9owfW1BqsV2ZqGq2L0IQ/wzuk/LHCFyp+vmSzuUKtq7b5hFmBzmk6kR3JFm700qKN3jANMQns0iLw/PJtDV8sc8FGH133YS098E2gFpUVlmzx0bwNvlAHMbQqlzRleqCVcenMsdGa+5rRinuaiUgr1BmbNL9+Af8RD1bSyAcr6c+VXqpxZ9Yx5K81Xpqz1kf/BAskR9JxVO8c2re3g3bpmNlXaY31ynR2D0yF46Uu0N30rqPz6ZbDnPUKsTdmN/VM0rSpkBrWuv3UuYWNurTUN+ZhLsFMUhHm0rjY0b3j362mpVvCt6nMRIXBjuiswwfV/ch0a2mjDy4qFI+nAjwu9cA66sXPerJpxcQHnQqWL1+e1R0LdMOaWoP1yjxNY3UR+nt9/R9l1KYCS7eYW97rP6qhYfdV0kdzYnchtBoZ9t5Md6gF+OjHqujkl6ppa3mdkdZLpGyQSG1s6E5IlbUBnf7Z4KNTX6qy9F7UGgGy85xMD0RayGnDcyndxqXaPTBaBM5JL1YLoy4TwFg86YWqUB2b01+tFv/jcaOO/z7cSe9fVKi1m14qYuwMmZ+bOcfLhuaxkwvo3QsKaEAjpmdluqYNyYez3PT4T7W07f/ZOwswN8rtjZ/o+m69W3c3KAUKRUpxp7jTQmnh4nr/2MUvcoHiFC/uDqV4kbZYKdR1667rm439n/NNJptk4/mSTGbe3/Pss7tJNjvz5puZb853zntq3ELDg/uY6c//K6a3LozuGZUIHETiYNKMawpp6vkF4rsaXOIgpyvAE02Fr3mzVkX+PBdvVq6JVfVNf7tut5dqfNcyLYBxKQfoKBcP9ETQCgAAQOaJx+g1EPXVc9bEFwhat0u5sHeRuPIcrgX4gm0FdOnbSqYTBwyWblH+70uznTR6cl1QIEE2aiCP+SNOXVR21Cj7oa5uq5lWQzpaqE+73MvI8Qetwmx6YOZYJsufspGlOOnNBjIqZrNJZJSpxON9Z0R4pX7Dbo/o5KYGHrjb6cF9rNQiIOMSaJf/TucM20ZanYGMXi4VPHKg1e83xdmqfW+voS631NDIB2sSuq6v3q48XxlwmuLEkYWb0rvAAwDIfRKevjU0NNCUKVNo5syZ6dkiAAAAuifZLkGqP080eBV4w25lctwloLORjMyw0Cm5x2uimRUcrHKLQILadjwTgQQutVBhvy818yoWDpdX+G4xu+qUv1E9rdTfc4V/vVVP575cJ27CQzsKhgteRDNrzxWiZSnOXOkOyvDbVuOl6obc+kxT4YGxii9OSVPlGwjDiPtraf+Hamlnjh3vQKFjmXJO2xSyiJJueAHm3Jfrqc6X4ckek4ELM7Gu6yU+26oRXS109CArFfuO03nrjZs9AgCIj4Rn8/n5+XT77bfT8uXLE/1TkMPw5w7kAk0TA3rpS1PV6DU0xhAm5hDElipvzJp+nshz5g0HKNpLMmKOtYLMwQIR1PLGDiTIIjRIxebv8ZaVqRz/jJINNqyzhW460i46Pa2MswRTC+Pyh2Uu+m6p2x9si1YeKJ7XQdAqZjaD73nW8aFvndT3jhp6Ykbivme5SL0vkFsgoYOaXq9B3NVUzT5Uu7Ny2fNrvzVmPGitF00zTYcy5US3sdIrNLz8XQcd/zT79skrh08mw1O9rrNheyDcoKR9qYlG9lAG3r8OttNL5xXQpQcqXV3nb9RWphXGpRygo1zyDa5nUkvQAwYMoLVr18rfGqBJuGNB//79Dd9qUybQNDGglz41ZaPX/u2DL0P79bTQPt3MzSa9/HvP1iZ66fyCZoGhUNbtVIIubIpuiRUFk5YZFl8gQSa1wX71tN3nUxXrpuOvdZ5mNx03ftRAv65y04PfNNKcte6cGZdqN0DV2ylc0CqwPNAmaTxkk1hjkZ9XdVzuM0Tu3EIndZExqPRlldkt+jtfykQN5Db6Yhx3TnPQjR85aGt15gLWetM0k3TwZVptqSah4fwNHvpzrYfc7uxneIYzcOfFkO+uKqThXYMfH9JJWbiq1lBVM8alHKCjXCzQM7mg1W233UYvv/wy/fDDD/K3CGgONn3bsWOHoc3fZANNEwN66VNT9lO6+ABlpXVIR7Pf6JUDU+G6Fn36r0Lhu8LeNdFYt0tuaWC0FWSLyUujeppFh7Z0lENGoy6gPJDZFuOGU73pCG2oqN50bKpU/j5dHlzpGJeq+baaYRMukyqwPFAPmVYRx6KZaFQvi3ie9du+fQct891I9m1njKDVKc/Vi++sg97OlzKxW5VjwunztHL7vssK8htR00zSUc202q1oqJaltys1Zz3DM5qBe+C1izOmD+pjoeV3FtPL50fvSJhJMC7lAB3l4oGelFRj6+eff55atmxJJ598MnXr1k18FRQUNEs/fuutt2RtJ8gifGFZt24dtWjRItubohugaWJAL/1qOrijmW44zE6dW5r9Rq/qpJeDLDwR5oCP+lw8rPeZsPN7yoRXkLkMggM8/u1vW0/PnNma2pYqgQTOWgpcieZAAgfcEtn+eOEuf+wNcscXDlEmEivTKtZNx5ItyvN3TWuk75a4xf5mug15ouNSDUId2MdKEw+0h83CO36IlZZuadSNp1WksSja0Z+d79dx3vKNtLu+u8hk6KnzzoEqnVqYhJ/duJFKMFxv50tZ5PmOA4cv00ptBJfJRgV60zQbnlZ83l++aj3VOHqK32WVwyeb4RkIX/P6tSd/cLTGoZT/s99c79triNcS5t5cRG2KtXVuwriUA3SUixd6Jhe0WrhwofjeuXNncruVdquhcNAKAAAAiMbgjhbxFY7ASS/DZtuzV7mpNM9ERwyMfPnau7uFLjnQRnuFlCKkSmgwrWtLLzm2rKRWRW3iCiTIZkC5RXz9vNJNXy1yxSybbAzTojwSqk8J76+WUYNQHq+XivPCzzuuOyxPtFR3uinia3KNeAK7a6uUwE23ViYqsOljv2OhlgU6jbsYHRc23+mTj4nA7ptouJhbnlabKr20s14Z9AU2Pr+lP8MzmYWZJ35opP9920jn7mOj247JE9cql1c/52MAgEaDVvPnz5e/JQAAAEAUOBh01XsNoq19tKDVgb2t4itdqME0XrSZv6V5IOGEZ2rpjzUe+vcRdrp6TPrbmD04Np8eHBv+OTWosbvOQ//3iYNaFSrtxkN9SUIJ9ClJR5aYLJRyJi+5Yni53H6sPg1M1bHIq7DLtrqpa0sz5fsCVGsrbeJ733ba/fxkw2ObWbvTQ3t3M85+J4pdRKe8opMoo54PDGyXklP0LzfTG+MLqEOpl+bMV651bHSe7oSBZBdminzBKW4eUlnvaxRhJXGu+maxix77wUFDOlrovpP0eZ4GAKRO+mb1QFeUlJRkexN0BzRNDOilT03nb3CT3UrUtZU5ZjZIb1+J04osd7eLpWGfthYRtIqV+ZQq3y11iZuAfbpbqDzEy4R9qdh0nT2sAtmjk0l4gs2qiE9DDngFZrtpbVyqnlazK9z0/l9OGtjB4vdJC/RPYaP2AjtnI+hzZf/MF+vppxVueuX8An9Ad1N9kfjeJ6TZgZ7Z6SuRvenjBjplTyVop6fzpSzG7mEVWrUvMQcFrTJZHqg3TTMJZyiN6WcVCyc/U7F4TP0s00mypftFvrUbznit8gWtSvKVc7Hb46U5az1UH9JYJJtgXMoBOsqlxOB6JhW04prKeOjSpUsybw80Bncq6NWrV7Y3Q1dA08SAXvrV9PJ3GmjZVg+9O6EgZnZUb5+Z9OYqL1U1eKnUN+kNhCfAf6/3UJeWJmpbnN6V50gaqp2dNlWlN2r18LcOmrvOQ69eUNAsaBWuNTnDenwwsch/08HZFuNebciogbzMcTn9ikJR0vTOHBc9/F0jHdbf2yxoNeH1evphmVtkvl11iF2X9gV92plF0OrLhU4RtGIdjx3eiopL3KJzl9GQbbivlfOlLK49tCkDlLP01OYMmWyuqTdNswFr2K59e+rcwkGdW2buwwst3Y+FWgbIHW/VDp+lBSZ/B0Fm6VYP1Tu9WV9YwLiUA3SUiwV6Jhe0GjJkSFyTvl27diXz9kBjcKeCrVu3Urt27chsNs6KbTqBpokBvfSr6bYaZQLLAaZYcJCqvNQkglYrtnqatc9WjWmPe7pOeB2tvruY0hmfiKRhuRq08nXjSxe1DuX7ul0eGvtsnfAzeW2csgoemmGlMnuVx1/yp950jOrpzKiBvMxxqXYGdPnuuq1h7rrrfCv4D3zdSFeO5qAV6Y6jB1npxVlO+mqxm1xuL5lNXhrRdgcdM8iY50zZXfC0cr5MF5yh5/aGXwhIF3rXNN18v9RF8za4aI82VfTbjW00raEatArMtCrLbzKVb11koh21Xlqy2UN7dslukB3jUg7QUS4e6Jlc0Oqpp55qFrTiFNW1a9fS22+/TW3atKGLL75Y1jaCLMOrcJs3b6a2bdtme1N0AzRNDOilT025o9CuOmUC2yaOoJVaIri5yk3LIwStOIDDdG6hlMFlQ0PVJHdzZXozrWoblfcvtJvo11Vualloirs1eeAqeaYN5NMxLlUj6XAZNoHTlXSPiWyxb3eL+Pz5ePp9tZv27W7K+vGdTdqX6O98KZPqBq/IauFgAp8/onkEpgu9aZpp3v7TSZ/Nd9GkPWvpwEGtScsU+ZJfuZy9ypfYq2Za8f3kkE5mmrHMTfM2uLMetMK4lAN0lIsXeiYXtDrnnHMiPnf11VfToYceSlVVValsFwAAAJ3DK6tqVk8rX8AlnjKoX1a6I/pard+lvGeXlubstyNPc3kgezUxXVsp/48DFhwITLQ1ebI+JVrg8R8ctGCjJ6onj07jVEFYLSY6YoBFlElOW+iinm2stHKXnXpzYCI3PsqUUD3cVBZu8tKpz9WJgCyPbxDMJW/V0/dL3fToqfl0xgi53l8gM6hl6NvrtW9P3JRppRjGc2bo4I5Nx+XQThZf0Eo7fpUAAG0h/UpeVFQkglqcjQUAAABEYmu1EnTh0oB4M2BUM3bOtArH3HXuIJPXbMABszuOzaP7T+TW3t60lwd2aWH2B2bYXFltTR4qKQcHR/WKXPLHjx850JozASuGM8w426Biuydi0MoAMSvB0YOU4MP0RS76cqGLLv+qC0180zdIdE44Dzf+nTMIQeSy2ka3lxpdXnp3jpM+mOskj2puBTRPR19G7wdLWtAJUxpo0aYYLVSzSNsSE40dZqXjh1rp4D5Weum8giBftSG+ABZnWgEAQDis6ay7BPqAU3dbtWqlS/PabAFNEwN66VNT1c+qXZylgczhA6zUrbWZ+rWP3i3viwWutGdaRNKQV5UnHRhsBi4bvtFs9M3vOUDXqshE22u84qt9qbZK/tI5Ltm7jGlwqZ5W4d6TDMFBfSxUYCPasNtLH/2jfO65FIBMlkgebpx9x+Nf9XDL9fOlTPJ8s/9Gl5L9ctV7SnDvpGFKJ7pMoDdNs5XRy/y1ziMWJbQKNwp5+qyCiM8P62QR+9OjtVks9GRzTGBcygE6ysUEPeUGrbgkcNasWfT444/T0KFDZb41yCJs+Na1a9dsb4augKaJAb30qel2X6ZVmxJTQllM4Ur/omVacOmb3jRUzcWZQrtiZM8BKw4E8qQ/V0v+EtVUNV5X26VzmVwoRpnjcdet24/No04tzPTg10qGVZnPN0bPJOrhlqvnS5mowV6nm8gTkA2ayVJavWmaaVTvRJV2JRqOWoUsuPD4C7z57tLKTHNuylzANBoYl3KAjnIxQ8/kygNbtGhBLVu2bPbVrVs3OvPMM6mwsJAefvhh+VsLsgJnzrHJPn8HcoCmiQG99KnpoI5muuFwO528h01KpkVg97vQTItMa7h8q5umLXBG9N5KlXwbiaypyafmk91q8ndf3F7rpRs/ctCV79bTqu2enCv5S3RcqsbrF42y0T+3FNEtRzWVnKgM6pAbN3MyOG6Ilab81EjzN3r8HRM545AzEfVKoh5uuXq+lEmeL7jrcHv9TQw4UyeTq/h60zTTdGzR9FlxhmmLyIlMmoC7mu6u89LFb9RT11tq6J0/ndnepLBgXMoBOsrFAz2Ty7T697//3ezCxr9zMKtHjx40ZswYslq1bwwI4oNX7Xfu3EmdOnXK9qboBmiaGNBLn5oO7mgRX4ny03IX/bHGTYf0tYoOgpnItEhUw8d+aKQP5rro1qPt1Pvg5oGUVMm3meiEoU3BvvJSE7UvMdHG3R56Z45TZFCMG2mnHqTvcamWA7JHT6RMgwv3t4vMtGz6nGUKkXG4KrMZh9lG9XDj/QwMXHMQhktiZQRstXC+lInNN0V3ugI6b2Y4tqs3TTNNYFk935JpvWxo0N01onMgX6d4zPHCSyhLN7tp0WYPDexgztpCC8alHKCjXLzQM7mg1U033SR/SwAAAIA4eH+uk977yyVuSjlolYlMi2RLNzZVZsbY+LHTC0RG2QNfO0TAat/uFqGN3lHLnHgVPxJcTvrAWG17eeWKt5NWyVUPt2xh9w0DB5cHeozTZVOv3TL5nK/1bplFdhNVNXhpi88WoDSgdJn358wX60UnWBUORGt5fwAAmSWpM8Fxxx1HM2bMiPj8Tz/9JF4DAAAARGL+BuVGut6ZWGAntIOgmmkRakQbq1teJkxy0xW02lrtoc/nO+n31S4x4ecbltGT6+jLhcpNO98c6LkkTEX1sPr4Hxfd8kkDfbvE1ew13BGtwelNeJzlGvFkHOoV1cNtxjWFNPX8AvGdf8cNb3g4oH3mXlYa1smctUwrYKxumUV5wVHRFgFBK96fRZs8ObU/AIDMktQl6pdffqFt27ZFfJ6fmzlzZirbBTQEpxyXl5drPvU4l4CmiQG99KnpFe82iEDLHyGT71j0aadcugL9oqacnU/dWgbvS7ozLaJpyOV6zKaq9ASO/lnvoYvfaKDbP3eEvYFZttWTkxP+RMflXcfl0fI7i8VN+EuznTRnbfOx9MzPjdTjthoaO6Uubf5mWkCLGYeZJl0eblo4X8rkpGE2mnxaAR03xEYujxLMzHT3Ob1pmimy5eGYKsUhVfKlvnJtdX98wzDr+4NxKQfoKBcT9Ey+e2A00SoqKqikpCTZtwYa7FjABwqQBzRNDOilT0250x3TNoHugUyfdhZ/0IqzaMxmLjsgqtjhJZuZ6Mkz86lf+/R7YkTTMN3lgbWNyvuycnoqCUt0XBbag8dOaLYIZ5s99aPSWvCfDR4RJNVr2UkmvJ2MihbOl+mivNRMU87Kz3jQSs+appNseTimSnFIplVZgTb3B+NSDtBRLmboGX/Q6s033xRfKv/73/9o6tSpzV5XWVlJCxcupCOOOELeVoKs4na7afXq1dS9e3eyWDDplQE0TQzopT9NnW4v7arzBa0CDGXjoVsrkwhOsLn2W3OcNKKrxW8+PaKbJcigPFsaquWB7N/B+8pG4TKpdSjaxQqJafUGRva4dLuDuwmqcBba7joyjDE5vJ30eb6UDXvAOVyKgTdnvJw4LDPnTD1rmilyNaMytDxQbYyhtf3BuJQDdJSLG3rGH7Sqq6ujHTt2+H+vqakRUb/Q7KvCwkK68MILRYdBoB+qq6uzvQm6A5omBvTSl6Y7ar3k9Srmvy0LE5uUsl8TG3CzF8v1HzjEYyW+0oMDels0oWGbIiWwxtu4tdpLnQLak8ugVkkeotZF2prwZ3pcfrnQSV8vctG7f7maZVoZ0Zhc9XZavMlJP/61ig4e3oMGdMh8QEKP6OkaNPVXJ932mYNOHGqlKWf7Ul6ygJ40zRS5mlEZWB54cB8L5VlNUfeH5wb79czO/mBcygE6yqXa4HrGHbSaMGGC+GKGDBlCDzzwAB1zzDHp3DYAAAA6ZZuvg1CbYhNZEmxbxdkzDc7gx6qV2BVNX+iiC0basl76xSWL952UR2X5JioLMJyVnWlVXmamUT0p525gZMHdpt6e02S+bg0YS1orO8kkfduZydGpTnwHIFLXzUY30c5aL82qcInMl4P7JO0aAjJILmZUckY0X6PYT41952LtT2k+aXp/AACZJamr0/z58+VvCQAAAMPg97NKsDQwUvaMysJNHs2Ufp27jz1t782lkUyRPTdvYGQR6mEV+LvWyk4A0Apqlkujy0srtrlFUwc+HmbfUJztTQM6zagct5+dxu0XfX/4+s6NWX5b7aYrDrFnffEJAKAdrDJS1aqqqsjjad4hqUuXLqm+PdAAXPbJn6WROxbIBpomBvTSn6YLNioBloIE59mxsme4A1GmSr+yqWGdz4idjcgDJ/ysD9985mqGVaKaqhkjKoGeVrlaRqOH41tv6E1Pu2/273Qr5bJMohmvqaI3TbMBn8PajWxNLVvmxrmMG6fwxx3pM+f94a9z96WsgXEpB+goFxP0TD5o9cILL9BTTz0lTMEisWvXrmTfHmgI9i5r3bp1tjdDV0DTxIBe+tGUu7lxeZ+aLfXnWg+d+lxd3N3c4s2OyUTpVywN1+3y0LwNbpFNtk93uWU3p+xpo4EdzDSogyVkwk+GGpdWn8H9Qb0tdP9J+dQqxOPLqFloOGfKRW962n2nDTZjV4NWoVmL6UZvmmaDXNPwrT+ddP2H2fdS05OmWgU6ysUMPSmpS9SLL75I119/PfXs2ZNuvfVW8nq99K9//YuuueYaat++PQ0ePJiefPJJ+VsLstaxYMmSJeI7kAM0TQzopR9NOWDFmS/hurnFg5o9EyspIBOlX7E0/GKBiya83kBTZ4cYcElgeFcLnbOPnfbokhsr7OkalzbfLIZ9w3q0MTfzD1Oz0GZcU0hTzy8Q3/l3vZed4JwpF73pafcFexvdXnL7klclNzg1nKbZIJc0fMcXsGJC+niF5Y81brrkzXr6fL7866deNNUy0FEubuiZXNDqueeeo0MPPZQ++OADGj9+vHjsiCOOoP/85z/022+/ic6CO3fulL2tIIs0NMR3QwniB5omBvTKfU1VP6rAUq3Qbm7xwNkz3FUoHFz6NapX5kq/omnYsUy5C9xYGb2kESQ/LtVyQC5zigaPBzb/1XNJYCg4Z8pFT3ra1PJAl9LhlMlGF3U9aZotckXDggCLR25QEosZy1z0yTxXWhZ99KKp1oGOcmkwuJ5JBa1WrVpFRx11lPjZalWufE6nclIpKyuj888/X5QPJsrDDz9Mo0ePpk6dOlGvXr3o7LPPpuXLlwe9ZsuWLTRx4kTq06cPdejQgQ488ED65JNPgl7D3Q15OwK/HnnkkZgD4brrrqPu3btTx44d6dxzz6WtW7cGvWbdunV02mmnUXl5udg+zjJzuZq6FgEAAIhMPN3c4kHNnvn4kgIaUB58GdNS6Vd5qTIx31TV3PMxVWZXuMSknsstjYzqaTV9kYvune6gxZuNuwoJQLx0KDXR8UOsNLqvlVRL2kxnWgFjUWRvGmClcXTUPXtvm8io5oWuFduMfZ0DACTpaVVaWupPT+OfCwsLaf369f7ni4uLmwV84mHmzJl08cUX0/Dhw0Uw6K677qKxY8eK7K2ioiLxmkmTJlFlZSW9/fbb1KpVK3r//fdp3LhxNGPGDBo2bJj/vW655Ra64IILgrYpGjfddBN9/fXX9Morr4h9uuGGG0Tgih9jeH9PP/10ateunXiMg2e8LTabjW6//faE9xUAAIwEB1ce+14pDZBV0rdvdyt9f7VVswbkHcqUgNrmSq8woDVLNDr+z+cOWrDRQ2+ML6Ax/fRd6hYNbp9+WH8rnfliPT05o5H26GymAeXaGQMAaJH+5RZ67hzFU+jLhc6seFoBY1GUl1imVacWZjq0n4W+WeKmJ35w0DGDbZq7xgMANB60GjBgAM2fP9//+4gRI4TPFZcIchfBqVOnikykRPnwww+Dfn/mmWfE+/z99980atQo8djvv/8usqb22msv8TsHl9gQnl8TGLTiIBX7a8UDB8Fee+01kR128MEHi8eefvpp2nvvvemPP/4Q37///ntRS8pZXRy4UgNjd9xxhwh42e3pa22uBfM39i/j70AO0DQxoFfua8peVvM2hl8tTbWbW7YMyGNp2L7EJDolNbqJdtZ5qU2xSXr3wMAbASOOS+6eyF/5vi6U1gx3QNMqOGfKRc96Du5ooYdPycu4z5ueNc0UuaRhcV5gplV8fzN2D5sIWr37l0t8MexpGW/jFr1rqmWgo1zM0DO5oNUZZ5xBL730EjkcDsrLy6Obb76ZTjzxRBo0aJB4nrOPOAiUKhxMYlq2bOl/bJ999hHBLQ6QtWjRQvzM23HAAQcE/e3kyZPpwQcfpM6dO4uSvssuu8xfyhgKB7y4vJFLE1X69u0rWktykIyDVvyd908NWDHs63XttdfS4sWLgwJmKrxd/KVSXV3tz9pSM9W4dSUPQA72saG9ivp4qOFapMf5MX4u3OMMv388j1ssFrEdoY9z9hk/Fu71kbZd6/sUbtsztU/8Ppw9qG6THvYpnZ8TPx6olx72SQufk5rBGm4bZe7Tkk0uf7fAcAztaKJnzrCLv8+1z0kdl+E+Jy63aVNkom01Xtqwy00tC7zS9qnWd2kptIX//LQ+9sLtk0pJSYn4Hvr6aPvk8r3UTB7/3xn9HMGLd+G2MZf3KZufE49LPe2TyWQWRuwdS710xnBlwYDfM5P7pJ4/Mfb0PzcqsDY9V+vwxvU5vfZbI4UiGre8UU/vTijI+bmRFj8nmfvEOvLP6n2PHvYp1+ZGHg3skyzz+KSCVlw2x18qI0eOpF9//ZWmT58uhBgzZgz17t07pQ1j0TiDid974MCB/sc5i4vN33v06CGCUFya+PrrrwdldnHZHgeRONjFpYV33nmnKOf773//G/Z/cSkjZ0pxECyQtm3bir9j+Dv/HogawIpUCskZYffff3+zxxcuXOgvV+QSx65du4ryykDzevbN4q/Vq1f7g10MB9K45SV7fQUasnH0lQNLixYtChoc/fr1E/sWmBmn+n41NjbS0qVL/Y/xZ8eP8/+rqKjwP85/z+/J27Nhw4agg4d15/3fvHmz//Fc2Kf8/Hzq378/7dq1S3iVZXqfFixYQDt27BBjlA9uPexTOj8n1orfR9VLD/uU7c+JL0q8Dfvuu6/YpnTu098Vu/hVFIkTemykDRV15M6xz2nTpk3ieR6XvH3hPqc2hd1pW42F/l6+mbw7dkjbp6r6HiJEU2Dzir/PpbEX7XPiccmTHp5DBHpaRtqnTfXF9MvWzjTfl8W3bu0qmt9Yr6l9ysY5gnXkRTNedNPLPmXzc+J5KC9wqhPyXN+nTbV5dOFnnakkz0vvjs3O51RfX+8/f/J7Y+zpd270+7zldNfP5WzHLh6/44tG+nKBg64ZvprK8jxhP6c1lTaavaorhSIat1R46Kd5G2n0Hp1zem6ktc9J5j6pOvJj3bp108U+5dLcKF9D+8QN+mRgqqxMrK0RbxgHjlggtWQvHVxzzTX07bffikAYG7OrcDngnDlzRKdCFuuLL74QpXxffvmlP9MrFM76uvrqq2njxo0iMyyU9957j/71r3/Rtm3bgh4/5JBDhNE7e2tdeeWV4kP/6KOP/M/X1dUJM3j21Tr88MPjyrTiiQ8PBv5AcyWqzu/Jg4/1DU1L1FIEOpei6nwi5eAla8r/Tw/7lM7PiTMhOdCn6qWHfcr258TfeQzyuVz9v+nap+kLGmn865H9rL6/Kp/6tjPn3OfE3ovqccyLKOE+Jy5tcHlMNLyzidr7jNlT3Sd+/6631RP/m79vLqR2JWZp+5Tt4ylwXKrBgWj79N1SN13watPYeueiPFE+oqV9ivZ4uj4nVcehQ4cG/X0u71O0bU/3PjHz5s0Lugbl8j6t2+Wh/R5qoHwr0U/X5tPSLV5qW2yiwR3NGdsndYyyplyhgbGn37nRqc/V0W+rPeT2htgCdDfTOxc1LWgFbvvXi1104evNM61UXj4vj44aZM/puZHWPieZ+6TqOHjwYHF862GfcmlupKV9qqqqEkExjqOo8Y+MZFpx5I6Nxx944IG0Ba2uv/56+uqrr2jatGlBASuOID733HMiq4t9tRj+8GbNmkXPP/88Pfroo2Hfjz23+OZi7dq1outgKJwxxUGE3bt3B2VbcRBL9cXi73/99VfQ36kZVoElg4FwgCxckIwHS+CkhwkNBgW+NtOP82AL9zhvY6THw5Er+xSOTOyTuk2hE+Bc3qdUH4+2T+H0yvV9Ckcm94m3Tf1Kxz6x+fqkN+oilgaqXlYDOtik7VMmP6fA41h9XejrjxoU3acrmW1nPyt1TlGc13RsyNinRB5P1+cRbUyGPp5nC56M5dmCr1Na2adoj6frc1IntnraJ5nbmMjjPAEPdw3K1X0q8HVyY7+9X1YSXfuBgw7rb6HXxhVmdJ9UTWWOVb2NvVyfG3GjlFmrPBEzplZsV3wpQ7expyhuiRy04v3+apErojm7ludGehl74Qh8XA1s6GmfcmVupKV9ivSaREnKzYsDRhwAkg1H9jhg9fnnn9Nnn31G3bt3D3qeU4nDCcpihFsVU+H0Ov6bNm3ahH1+jz32EFHgH3/80f8Yp7txRJA9tBj+zhHOwGysH374QUQMOf0OAABAc/N19p+IBAesnj07ctkgiG7CzhQEx/sMhy1kFgMjdgBiY2PDPV7J93LgyufBh2MHpAHu7JvM8xyI4qxZXtwKhH+1WYjGvdpA416tp9GT60QmFy+SAQD0S1JBq9tuu41efvllEbSRyXXXXUfvvvuu6OLHnk/sI8VfarCKzdG5VpJL/bhEkDOvnnjiCbEdxx13nHgNG6ZzuSAHqlatWiXej72x2DxeNXTnMkHOvuL3YMrKyui8884T3QB/+uknmjt3rigX5EAV+0Ew7NPFwamJEyeK9+bSxXvuuYcmTJgQNptKT3DAj+trI0VfQeJA08SAXrmnKa+ucoYVr6aGY+r5+fT+xYUZ71iVaQ2313joiwVO8SWLApuJHhybR3cfn0dmnd1oJjourQELeN9eWUgDynN3PMkE50y56E3PvIA6i3pfMosvjpUx9KZpNsgFDTkTKtnnuUsgL24FYSJyusOYs7/Z5Kujd01zAegoFzP0TM6InUvxOAB08sknC3M1/iooKGiWpvbWW28l9L4vvvii+H7ssccGPc5BqHPOOUdkQ7F/FJcnchCqtrZWBLGmTJkiugkybFz2wQcfCAN09pPibeMA1OWXX+5/P64B50wq9qRSue+++8RA4OAVlwpykIqN1AOzud555x3RLZD9q9gA/qyzzhKBLiPAugK5QNPEgF65pWms1VUx8zSAhku3eGjC6w3Uq62Zjh0sJy2qKM9E5+2r3+MhkXGpZox0amGiQR3lpKDrBZwz5aInPTlTRaXO6W0WAM4UetI0W2hdQzVjigNLgYtYqj1AuNI+FV7U4sUtXgRT5hRekWEVttRwpVu8Ltr76UXTXAE6ysVucD2TClpxmRzTuXNnUecf6FavEmoSFg+VlZUxX8OO99wtMBJc6vfdd99FfQ8OZIX+L/bqevjhh8VXJNhVn4NmRoNLLzm7TDUlBKkDTRMDeuWepqmsrupJw/JSZVVsU6VibpnMtdFIJDourb5FR5ecjsq6AedMuehNz8CgVb0vCTS0DCvd6E3TbJArGnLGFGdCcWApGXsADkT1a0/CwyoaHNji1xlBU60DHeXigZ7JBa1C20oCAAAA4VZXZ1W4KTDnKp7VVT3RoUwJUtU1ElU7iEolWHhxyeGiTR5qU2yigR2MoWOsm+8t1V6a/J2Dxu1np5aFCAwCEA0Onh85wEqBMfRMlwcC4xCaMRXJPD1bi2GB29U7vP0xACDLGLcwEgAAQNpXVwNX9I1ovl5oN1ELX/U8Z1vJ4PfVbjrjxXr6v4/leHjkMj3amGn2DUXi5we/aaTqhlhlqQAAZuoFBfTy+QVUlh+ctQhAuuBA1ZEDrUkvWkUyZ+dQVf8k/AzZvJ1N3NnMXTV1P/2FBqp04GAAQGskfVRyWSCXyl111VXCb0otGeSyu08//ZS2bt0qczsBAADkGBaTSbRUZ54+M59mXFOY8+brydChTNnfjZVyAiq1jU0BMaOTZzVR99Zmf3A00yVOAOQ6B/a20j3H59FJexi8FSnICcKZs/OVdclmT8KdBMN1OP5tjYfum5lijSEAQDpJTe92794tjM+5cx6bnk+bNo22b98unuOuf//+97/pmWeekb2tIEuwQT3X0Bq5Y4FsoGliQK/c1HTxZmUy2LmFicbuYdNdSWC8GqolgpslBa3qGpX3KdJh0CrZceny3aMgW0QB50y56FnPYZ0tdNEoOx3cJynHkKTRs6aZwogaqqWGvAjWq40pqMQ1kU6CkToc8+//bC2kFdskb7jBMOLYTCdm6Jlc0OqOO+6gJUuW0Icffkj//POPMJdVYXOwE088kb755huZ2wmyDHdUBHKBpokBvXJP0yVblNnggCTS9vWkYaAZuwxqHcr3ojwio4/LWoeX7p7WQOo0JBsd0LQKzply0ZueoyfXUuebq2nO2ux1MdCbptnAyBqu3O71n/vDdRJMpcPxqh1yrtdGxshjMx00GlzPpO4kvvjiC5o4cSKNGTMmbCck7vC3du1aGdsHNNKxYOnSpeI7kAM0TQzolZuaslk4M0CnZuHxanj23jZ6/px8OnlPOeU363Yq/88ZvZGSIcalw0X09E++9mci00p/2WfJgHOmXPSoJ9/c89eKrR6aXeGitb7zSqbQo6aZxsgaxgo6xXo+VsJKt1bJbBVQMfLYTAce6Jlc98Cqqirq1q1bxOddLpf4AgAAYFw6lplocAczDemo30yreNirKwftUg/csU8He3BwSQPz8TwXbaupEx4fRvMJUwk1+g/9HQAQHrvvWHlhViMt2OihSw600e3HGqdJBshtEukkGK5r4eH9rdS1pYnW7Q7O1uIumoPb1lHfdoXp23gAQGaCVj169BBlgZH4/vvvqV+/fsm8NQAAAJ1wzaF54gvIIZxprOrfwR4fRiS0HBBG7ADEh913B1DvS1REliLIJdROgr+ucpM7MOhkVroU8/OhCz3Mnl3M9Nq4ArHQM+3yQnH95HLCpudNdP1eW4ioTcxtCBcMAwBoKGh1/vnn0+23304HHHAAjR49WjzGZYIOh4MeeOAB+vbbb+mxxx6Tva0gi7BXGZALNE0M6CUfaJoZDeudXvp+qYu213jpgpH2pP6PahobSqB/h14mzYmMS1tAkOrVCwqCfjc6OL7lojc9bZxSwucnX2OHbPj76k3TbGBkDTnL+MLX6un31U0lUxywevbs/IgLPXPXeWjiG/X0wcQiv6k7Xz8rtnuoZxsz9W5DtGhR9ABuuGAYB9CMnPUcDiOPzXRgMbiepsrKxNsZsfH6lVdeSa+99hqVlZVRZWUltWvXjnbu3CnKAsePH0+TJ09OzxbnMFxW2aVLF6FXaWlptjcHAADSxj/r3bRht4d6tTXrJpiSLLvrvDTgrhrxc8XdxVRgSzyj4atFLhr3an3E56eeX0BHDsxs9y8twPORjjcp2v5zSxG1K8ENAwDxcNrzdfTLSje1LDTRrjovXXuonW44HJmxILeoavBSvzuUa8A3VxbS4I7KfIMDUaMn10X8O+4+mOzc5NTn6kQwLLDzoJrhZdSsZwCixT84XrRu3bqU4h9JzXA5q+qJJ56gs88+mz7++GOqqKgQxmBcNjh27FgaNWpU0hsEtHlTUF1dTSUlJWGN90HiQNPEgF65o6mRViDj1bCsgKjAppThbK70Uo82prT6dxhpXPJr2MfK6Va+gALOmXLRo56q/5uaaeVLvMoYetQ000DDYB/DHq3NCRm192vf/PFfK5y0dls9DetWRGSiZuV/Rsp6TgWMTbl4oWdy3QNV9ttvP1EO+N5779EHH3xADz30EAJWOoQDkmpgEsgBmiYG9ModTaP5LhlVQ55gsCk9s6nSk5J/R6jtDK/ujuql+HcYdVyqwarnfjF2O+hAcM6Uix71HNLJQgf1sVCrIuWkkunKEz1qmmmgYVNDAabRnfxCDy+4DbqrmsY+10BXfWSi0Y/WiUwtznDm75xdxa+Z+Eb0uUysYJlRwNiUiwd6pha04nLADz/8kB599FHx9dFHH4nHAAAAGA91BTIwZT50BdKodChTLrcbq5Kf0HK2WvuS4Il2oH+HUXnhXGX/X/3N5ygNAIjJTUfm0TsXFdKBvZW7fqu+EmGBQbCYTf7FnEaXt9lCjyXOhR5ecNsVuZrQv/jWwyBZzwBojaQNMO677z4RqGLz9UDsdjtdddVVdMstt8jYPgAAADlCsun4RqC8VJnIbk4y04rh8srSAhNtqvLSZQfb6LThNt1kWKVC77bK3XYyXmEAGJ3jhtiEAfXIHsbzxAP6ybZqcAVnWqkLPedNrRfm69EWeiKV/IVbfHv/4gKqrHfQH2s9YT2tcE0GID0kdYV68MEHRVngkUceSRdffDH17t1bPL5ixQp67rnnRJmgzWajG2+8Ufb2giyRn2/slfx0AE0TA3ppX1Oj+C4lo6GaabUp8d4nfrbXeGjpFmWWfOlBdt15hCU7Ll2+ew1kigSDc6Zc9KrnYf2t4isb6FXTTAINiZbfWSyCRqFeP3yNfPm8Anr4u0aqbvDS1WPsYYNKiZT01TiIXjivQGRdcRBLZe+uZsNnPYeCsSmXfIPrmVT3wP79+9Oee+5Jb731VtjnzzjjDPr7779p6dKlMrZRN6B7IABA77Dvw+xVbvIEXFnQVYdo6uxGuukTBx010Eovn1+Q1Ht8Ns9JE99soAHlZvr+6iLp25irXPVuPb37l0v8vOn+kmxvDgA5wd3TGuj1350iAH71GHQNBMYlVqfBSF0H+e8++cdFhw+wUqG9uWk7AICkdQ80J/vPDz300IjPH3744VRTo7QfBbkPm77t2LHD0OZvsoGmiQG9ckdTTscP9XzQq+9SIhqO7mul58/Jp38fYU/6/6nlC/v31O+EOJlxqQasQBM4Z8pFj3pyKVVVA9HCTR76Z71bmExnEj1qmmmgoRz8/ldR7orDeWHxzxeNstG9XzrCmrYbGYxNuXigZ3JBq3333ZfmzJkT8Xl+jl8D9NNmk6Oj/B3IAZomBvTKHU05Hf/O4/JpdB8LnTnCKlYlOcNKj6VsiWjYvbVZeMf0L08+4KSWIvDEWa/gWJcDdJSLHvXMsyqLC5/Pd9FRT9bR9IWZDf7qUdNMAw0VbvusgSa8Xk8rtjW/od9V56XlW2MHZXnBjRfYIhFp8c1IHZMTAWNTLl7omZyn1eTJk+mUU06hm266iSZMmEA9evQQj69atYqef/55+uOPP+iDDz6Qva0AAABygEP7W8UXkAf7WfGEnC079oNhMgAgRWyW5l3YAMhFfljqopXbvTRhlM3fmEPl03lO+r+PHXT0ICu9dF7k0nxeWOMFtsWbnPTjX6vo4OE9yGw2Ry35i2TgHtgxGaWCAMghqZnvqFGjRHralClTxBcf1IyaspaXlydeEwib43GEEAAAADAi0xc6ad0uL5063EYtCxO7QWxTbKZ/bimi+Rs81CLBv9U73VqZaM1OL117aPKllwAYseNaINFKowDQMjYLXxO95AzTALCuUfleFOfloW87Mzk61YnvFguXA0Z+LTomA6DxoNUJJ5zQrEMD0DclJTC3lQ00TQzolRuaejxe2lztpfISE5kNsHKfiIb/+dwhglZ7drHQiG6Jr762KzHTof31f2eZ6LhsXaQErYZ2wop2IDhnykVvetpD7gCy0X1Tb5pmA2jYNJbZpy2UGocSWCrOM0nX1IgdkxMBY1MuJQbXM6mg1TPPPCN/S4Bm4ZWGXr16ZXszdAU0TQzolTuabqzy0t7311JpPtHi/xTrOnCVqIblpWZat8tNmyo5KxkBFlnj0ipW2YmcbuN6PYSCc6Zc9Kin3XfcZCvTSo+aZhpoGJw16HQ1vwbU+oJWRXEGrRLRVDVwZw8rLgkM7Zhs5NJAjE25WKBnckbswFhw2efmzZsN3bFANtA0MaBX7mi6ervyfm1LzLoOWCWjYccyRY+NlYkFVzZWeuiMF+vo6R99dQ46JplxuX6X8tppC9BFUAXnTLnoUc8OZSYa0dWctaCVHjXNNNAwsDyQFy6aP1eTYHlgopqGM3Af0tGsy47JiYCxKRcP9Ewu00pl5syZtHr1atq9e3czN3suH7zssstS3T6gAfiz5QOlbdu22d4U3QBNEwN65Y6mq3YoF9QeBkiLT1RDvklkNlclNulgQ9eflrupusFL/zpY375NyYzLs0bY6OHvGmnpFuNO5kLBOVMuetSTu5mKr6drac5aD1kzvMigR00zDTRUsEUpD6xNsDwwUU1VA3c2Xb/xwwb6fY2H+rc367JjciJgbMrFCz2TC1rNmzePxo8fTxUVFRFbLyJoBQAAxmO1L2jVvbWxJ2yRygOZTQlmWs1aqWQQjeqJroHh6NFG0bVNsf4DpQDI5swRNjqwt5d6tsHxA3K8PDBK0KooL73bwKWAtx2TT8c/U0cf/eOiW472iAYqAAA5JDUDvuKKK2jbtm00efJkGjFiBJWWlkraHAAAALnMKl83nR4IWkkrD1Rbau/fy7j+GNFw+W5U0P0MgMQ5dx99Z28C/fPs2QXie16Yu9qjBlmpayszDShP//Vzr65mmniAjQ7pa6VW6PILQPaDVkuWLKGbb76Zxo0bJ3drgCbhrLlWrVqhY6REoGliQK/c0dRImVaJatihzJxweeC6nR7RcZA7e+2TRMdBI4zL6YuUTLSFm1AeqIJzplz0qOdPy1101XsNNKDcTG9eWJjx/69HTTMNNFQotEfe/7P3tmdMU/6bO48ztpeVCsamXEzQM7mgFbvXG1k0o2E2m6lr167Z3gxdAU0TA3rlhqZcLt7kaaX/oFWiGvZtb6bnz8mnzi3MCWdZ7dnFHHf3I6ONSzVotbUa3QNVcM6Uix71dHk4gO6lGoebVmzzUKcWJiqwZe4co0dNMw00lA80lQN0lIsZeibXPfD//u//6Pnnn6eNGzfK3yKgObhTwdq1aw3dsUA20DQxoFduaLpgo4fG9LXSgb0s1Lml/gunOl0AAOfySURBVAMsiWpYmm8Sxsd7dIk/Y+oXn5/V/gbxs8KxLgfoKBc96qmWUtU4iA58uJb+WR/GECiN6FHTTAMNFd6d46Qr362n6QudzZ5bs8NDW6o85PZ4M6bpjloP3fulg86bWkdGBWNTLh7omVym1QknnEAOh0P4WR188MHUsWNHsliCJ+GcifXAAw/I2k6QRTh7YufOndSpU6dsb4pugKaJAb20rSlP0Ca90eDPCmLOerFetILWcwedTIxLLgsstHPQSv+lgQyOdTlAR7noUU9byCklG90D9aZppoGGCn+tc9N7f7moWyszHTUo+LnDHq8VgdlZ1xdRjziaDcjQlOMKz/7SKIzh565z054JLFTpBYxNuXihZ3JBq19++YWuvfZaqquroy+//DLsaxC0AgAAY8ABq19XB6/S8++T3mwQraBBE7+scNGizR46uI9FdBuKxaOnFdD/TvaS/vPWkmdMPwt9v9RNe3Q2i7bj8egKgNGxW03NAuQA5HIAttHd/Ea/tlH5uTjN3QMDaVtiphOHWun9uS56YWYjPXWmYhQPAEiepC5RN954I5WUlNCHH34oUtV2797d7GvXrl0pbBYAAIBcgIMEnGHlDslY5t9nrnSL50ETL85y0u2fO2h2QFZaLGwWE1ktCFtFyvJb7DNg/3u9h0ZPrqNTn6sTjwMAIhPaac2MoBXIUey+oJXTHVwCWO/kwJXyc6Y9ISeMUgzgP5vvEuWJAIDUSOoSVVFRQVdeeSWNGTOGSktLU9wEoHU4a668vBzm+xKBpokBvbSr6eod3pSeN5qGHcuU126sjK1LdYN+tZOlKWf5sZl0uCw/I4Nzplz0qCcHw7OZaaVHTTMNNAwey42KBaSfGodybeDK1wJbZjUd1tlCe3eziBLBV39r7rWldzA25WKCnskFrfr3709VVVXytwZotmMBHyj8HcgBmiYG9NKupt1bm1J63mgadvAFrTbHWHnlsoYDHq4VXxXbjbNKm4imapZfaGgPWX44Z8pGj3oW2YkGlDftjyXDu6ZHTTMNNAzNtAp+nL2s1LEe782+TE0njFIiZRy0criMtQiFsSkXM/RMLmh1zz330Msvv0xz5syRv0VAc7jdblq5cqX4DuQATRMDemlXU/YPGtXT0uyGh38f1Ss+3yYjaVhepgi1KUam1fJtHtpa7aX1uzz+7CwjkIimRs7yiwXOmXLRo54dysz0/dVFVJav/G7JsBG7HjXNNNBQwWYNH7Sq9WVaJVIaKFPTowdZxfV7e42Xnv25kb5a5DLMYgrGplzc0DM5I/Ynn3ySiouL6bDDDhNZV507dw7bPfCtt96StZ0gy1RXV2d7E3QHNE0M6KVdTblL4IWv1tPva5oygkb2sNCzZ/vuhnRMohp2LFUmz5sqo2dPzVqpTExGdLVQvs04QatENDVyll884JwpF73qOX5/O9U1eqlFFryi9appJoGGAeWBIZ5Wanlgon5WsjTl7Tp/XxtN/dVJ933lc4QnEgt9eu+uzGBsyqXa4HomFbRauHCh+M7BqpqaGlqyZEmz1xi55hIAAIwET7xuPjqPTppST22KiN6fWKjrDKtUsxuYTVVeUQIY6VrJZW/M/r2gY6wsP/awCmwEwFl+HDTFGAQgNv8+IoNt1QBIA+ftY6NT97RSod3UrIvfhfvZqGVh9u5Jf17hpm014X0X0V0ZgDQHrebPn5/MnwEAANApq7crk7KBHRAsiEa5r9SvrpGoqoGoLEx2g8fjpVm+oBWXWILI8Go1T/7Zw8poWX4ApILL7aXRk2vJ4SL67uoiKs3HYjPITTiTKlw2Ve+2Zrr3xOxdC1TfRYriu4j5EgBpDFoBY8GZAF26dEH2nESgaWJAL21oyhMs9gnisqvQidaqHUqqS/fW+k53T1XDApuJpp5fQO1KTFSodMRuxtKtHtpZ6xXdjvbsbKwJbaKacpYfr1ZHG5tGBOdMuehRT85IXOlbbFi13UODO5oz6mulR00zDTTUtqbx+C72a0+6BGNTLibomXzQio3APvroI/r5559p+/btdPPNN9OgQYOosrKSfvzxRxo5ciS1a9dO7taCrMCdClq3bp3tzdAV0DQxoFd2Nd1R66FJbzQErRiGejLs39NCjW4b7dPNOAGDZMflkQOjX3rVrKF9ulvIbjXWBCVZTTlQpdfJfzLgnCkXPerJNz82i2JefdSTdTT/1iJqU5y5840eNc000FDhn/VueutPJ3VvZaZLDmpaDapq8FKD00sl+SaxYJRpTY3su4ixKRcz9Eyue+Du3bvpiCOOoAkTJtAHH3xA06ZNE4Erhg3a//3vf9Mzzzwje1tBluAAJfuWGbljgWygaWJAr+xqygEr9mAI58mgclAfK/3nmHw6apDS4tkIpGtcDupgpnP2sdEJQ42XDI1jXQ7QUS561TOw62s2ugfqUdNMAg0V1u3y0Cu/Omn6IlfQ4y/MbKRh99bSbZ85sqKp0bsrY2zKww09kwta3XHHHUK4Dz/8kP755x9hJqvCXQRPPPFE+uabb2RuJ8gyDQ1NN6dADtA0MaBXdjRVPRkCja5DPRmMTDLjkleFn/ulkWYsC55gq+zX00oPnZxPZ+8doX5Q5+BYlwN0lIse9fQ1XRNYs1DZrUdNMw00bOoe6AzpHsjekUyxPXuackY6+ywGMqKr2RC+ixibcmkwuJ5JXaK++OILmjhxIo0ZMyZsbWWvXr1o7dq1MrYPAABAFonHk4Hbpf++2kXbqkMiWyAs3y1x0e2fO+iz+eGDVgAAkPlMq2xuCQDJw2WuTGPIGlqNQ5m/hDNpzxSq7+KMawqpa0tlO04bbvNbKwAA4iOpI6aqqoq6desW8XmXyyW+AAAAaJtlWz301SJXxIypeDwZFm/20IlT6oUvCohNhzLl0ru5qnmQ7+91bvprrVt09gIAgHSCoBXQA3Zf0Ir92cIFrYqzGLRS4VLAc/dV7BM+mYd7ZAASJalLVI8ePURZYCS+//576tevXzJvDTRq/tazZ0/xHcgBmiYG9JLPrnoT3TG7J415rIHGvVpPoyfX0anP1QnT9bg8GUxNngxq58AeBuocmMq4LC9TJtCbKpsHph75zkHHPl1HL8x0khHBsS4H6CgXverZuaU5a+WBetU0k0BDBZvP/jG0PLDWZ2UVqVNvpjU9cagStGJrBb1npmNsysUMPeMPWs2cOdNvtn7++efT66+/LkzYVT8rLhN0OBx011130bfffkvjx49P31aDjMKfbWlpqaHbbMoGmiYG9JLPJW820J/rTFHN1aN5MnRpZfJ7Mqzerky+urcx1sU02XHZ0R+0Cp60cnbVr6uUpeL9eurXoDUaONblAB3lolc93xxf4P85wz7sutU0k0BDBbvP06oxJIGptjHxTKt0atq1lZn27GIWGerrd+s7mxpjUy4m6Bl/0Oq4446jH374Qfx86aWX0plnnkkXXXQRDR8+XDzGnQQ7depEjzzyCI0bN04EtoA+4E4F8+fPN3THAtlA08SAXnJJ1Fxd9WRoU9T0WNtis9+TocKfaWWsi2my41ItD9xdz0axTRPXBRs9VO0gKssnGtzRWAFAFRzrcoCOctGrnnlWE10w0kbn7WvL+M2QXjXNJNAwenlgbRLlgenW9I3xhfTLdUW0Zxd9L0xhbMrFDT0p7n7agR0C+cL2xBNP0Nlnn02ffPIJrVy5kjwejygbHDt2LI0aNSpd2wuyhJEPknQBTRMDemXWXL1f++aPe4gnfsrf/rHGTe/82Uh7dLHQal/QqrvBygOTHZcleUq5Anc22lzlpZ5tlAn1zAplmXhkD2vG289rCRzrcoCOctGjniX5Jrr/pOx1MdOjppkGGhL1bmem324sInvIXe3hA6zUu62HurYyaUbTloXGubZjbMrFbXA94w5ahWO//fYTXwAAAHKHeMzVw6Gag7P3ictDdPX7jqC26caZiqUGL/xwttXKbR7aXOmhnr6ySs5yY/bvpe8VWACANrjxowb6fbWbbj06jw7rn9ItAQBZzRgMF5i6ekweaZUGp1csWhlxsQ+AZEjoSDFyHSUAAOgFNk/fv4eZzKbgjCs2W1fN1cOhpt43Kyv0vc1FrzeENXMHzXno5Dz68rJCkammGsj+tloRmI3vAQAg3azZ4aGlWzxU4fMlBACkn5+Wu2jIPTV06Vv12d4UAHIGU2VlmPZFYWjRokVCQSt+7c6dO1PZNt1RVVVFXbp0ocrKSmGmlitwaWhDQwPl5+cjcCkJaJoY0Es+22s8NPH1Wpq9uukxDlixubrqVRVK55uq/QGqSHDgi03b2QNL78gcl3+ucdPxz9SJ0oEFtxaR2aDlgTjW5QAd5aJXPQ94uFZkfDKb7i/J6P/Wq6aZBBo2eVdx591GN9Fdx+UJLVibHbVeKrSbqMAWf+JFJjTlzoF7/LeWPF6i2TcU6TLbCmNTLt4c1pPjH2VlZbRu3bqU4h8J5QKPHj2aevfunfQ/A7mL3Z5Av1gQF9A0MaCXXFoXmei9iwtpzlovLdnioSEdLbRn1+gZPg+clEfXf+TrIR2BQDP3SBlbekLWuBzayUwfX1JAW6q8hg1YqeBYlwN0lIse9VRLu7OFHjXNNNBQyQJ/+ien+Pn2Y/LIaiERwBpyT614bOkdxVSarx1N25aY6YBeFvpphZs+neekKw/RbhljKmBsysVucD0TClqx8fppp52Wvq0BmoRN9rljwZAhQ8hi0f9NaCaApokBvdKj6dx/5tNew4bQPj3iuxCO6B6/9pHM3PVEKuOSzeu/XuyisnwTnTHCRnarifbtDk8ZHOtygI5y0aue2YyP61XTTAINFQIN2DlYxUGrGl/nQKbQpj1NTxhqFUGrT/5x6TJohbEpFw/0TMzTCgAAgD5we7x0xkfdacxj9bS1Oj4/E86cYr8lLgFM1ezd6Czb4qHbP3fQy782ZntTAAAGJZ5zOQBax2Zp7r1Z60sKz7dxEEt785FjBttEU5tFmz20bKuxu8IBEA+4XAEAgAFZs9NLdU4LLdvqped/cdL/fdwgauYjUdfopTu/aKD+5WYa2T3ypSOWmTtQKC9TJtGbKr30z3o33fRxA323xJXtzQIAGAgz7gKADuDgjwo3NWFqG5XvRXbtBawY9q8c3VeZJ336D679AMQClysAADAgvLrH9G1noid/bKRXfnVSbZSkHw5aTfnZSS/OctK7EwppxjWF9MTp+bRnl+DLCJuws5k7iE5HX9BqW42Xpi9y0dRfnfTuX4onBwAAZIIWBdq8oQcgEdiY2m5pKg9kanyZVsUarrw7YahSt/jxPFfURUMAQAKeVrt3707vlgDNYjabRQ0tfwdygKaJAb3ks2SLMkEa3tVCa3a6yOEi2lXrpeK88Dcxaso9Z1KxUThnUvHXqcNtwnSdPay4JNBIGVapjMtWhcokmyfYH/2tBKv272kc7SKBY10O0FEuetXzmjF2+nlFPfVqm/n90qummQQaBpcI8vW00dXUUZCJNKfRgqZHDbTSDYfZ6YRhtpzrCBcLjE25mKEnMq1AfDQ2wndFNtA0MaCXXBZtUjKtBpabRZo6s7Mu8kqfyxe0soW5anCg6siBVkMFrFIdlxz4a19q8pdqMqN6wYidwbEuB+goFz3q2abYRKcPt4qb52ygR00zDTQMNmNv9JUHqkbshUmUB2ZK05J8E117WB71zkLQOBNgbMql0eB66vMoAdI7FixdulR8B3KApokBveSz2FceOKDcJLJ+mF1RglZOT3PDU6OT6rjsUNZ0CW5fYqJebfS10poMONblAB3lolc9+7Sz0GOnF9CtR2e+hkqvmmYSaNjEx5cU0i/XFVH3Vmb/9fXUPa1+3yita8oZ618tconvegBjUy4e6Bl/eSAAAAB9UNXgpXW7lADVgDgzrVRzUy124cl1XytmcCez7soDAADa5sO/nfTCzEY6pK+Vbjhcw+Y/AMSgb7vg4NReXS20V9cC0jo7aj102nP1tHhLUzCCuzQ/e04+tS5CbgkAKjgaAADAYLCp+thhFtqzfZ0w4m1Z5Mu0qo2jPBCZVtImqqt3NE1Sv1viplOfqxOPAwBAJthS5aW56zz003L9ZHgAkEtMeqOBlgQErJhfV7tp0psNWdsmALQIglYgLiwW3KnKBpomBvSSR3mpmZ44PY8eOGyr+L1lPOWB7uatpUHy45InqvM3YqIaDhzrcoCOctGbnhwgf/wHpcXan2s9NHpyXcYD53rTNBtAQ4VXfm2k+79y0KrtHv/iXIPTm1RXvkxpyoHimRVuCt1Ct4do5kp3zgeSMTblYjG4nqbKykr02MwQVVVV1KVLF6qsrKTS0tJsbw4AAAg2VnrI4SRqV2KiogidduqdXlq7U5kMGtFwXSY8EeUbxEjMuKYQGgMA0goHqGaF3DBzd9iRPSz0/sWFWdwyABLn8MdqacEmD715YYEod7310wZ6cZaTrjrETv93pDZLX9nDatyr9RGfn3p+gWhyA0Cuxz/Kyspo3bp1KcU/sGYOYsKrFDzgklmtAOGBpokBveSybpeHXG6PX9OOZWbq0cYcMWDFFNhMIpCCYErq43L1Dm9Kz+sZHOtygI5y0ZueWsjw0Jum2QAaNmHzxXacLgrqHliUp11Nu7c2pfS8lsHYlIsXeiJoBWLDnQoqKioM3bFANtA0MaCXPDweL42eXEu9b6+l2fPWQtMsjEs9T1RTBce6HKCjXPSmpxYC53rTNBtAwyZsviYxjb6mMbWNyuNFdpNmNeVFQDZd5wzHQPj3Ub1ye5EQY1MuHuiJoBUAAOitNXG07Vu900t1vslcm0JlSXLdTg/d95WDHvP5m4RjxTYP/e8bB731hzN9G24Q9DxRBQBoHwTOgd6wW4L9N9VMq+IoGeRagLsEckluIPz7s2fnZ22bANAiKJQFAIA4YYNaNtDmsorQ1sTba7xidZon+9kKOkTbPrV18qJNynP925v9QZPttV56/IdG6tzCRFcdEj6XfsVWNz3yXSPt1dVMZ+1ty8Tu6Br+TNh0nUtxVDBRBQBkMnDOzR+4JDDU0wqBc5Br2EKCVrVJlgdmGp6bsYfczR830NRfnXT6XlZ69LSCbG8WAJoDQSsQF/n5uJGSDTTNPb04IMST/EBmr3LTqP/VUmVA07fQQFE2t0/tSKca6y7apNyh9C83+TVVuwfuDOgeyFlagUE4dSKopuCD1MalOlEN1Rlo41jXA9BRLnrTUwuBc71pmg2goYI9tDzQkVx5YLY0vfWYPLrz+DxdzbEwNuWSb3A9EbQCcbXY7N+/f7Y3Q1dA09zTSzWuDcXjpaCAVbhAUTa3L9BYl4MiizYrQavBHa1+TVsWKpM8LhvcuNtDV77bPFvrhGHWoNVMIGdcKub20jYp59HCsa4HoKNc9KhntgPnetQ000DDMEbsanlgY3LlgdnStDCJ4JqWwdiUiwV6wtMKxIZN33bs2GFo8zfZQNPc0ysRY9pMdmBK1Fi3qTzQ5Ne0NF8pC2EmvVkfNlvrhZmKEZYVVw1NjUu9AU3lAB3lomc9OVB15EBrxjM99axppoCGTdx8ZB59fUUhnTBUiV4d2s8qxnXb4sSN2KFp6kBHuXigJ4JWIDbcXnPdunWGbrMpG2iae3olY0ybiQ5MiRjrVjV4ad0urz9opWpqMpn8JYJ/rvUEeZww/Pvyrd6gFHygjXGpN6CpHKCjXKCnfKBp6kDDJnq0MdOQTha/LcN/T8ynqecXULfW5pzR9N8fNdAJz9TRmh25H5jA2JSLF3oiaAUAAIkY1yZCJjswxdORjoNP1x9mp7NG2PxBKpXQ3yNhRXkgAAAAAIBUfl/tpj/WuKkiRtAqsEO01rtZA6DLoNXDDz9Mo0ePpk6dOlGvXr3o7LPPpuXLlwe9ZsuWLTRx4kTq06cPdejQgQ488ED65JNPgl6zc+dOmjBhAnXu3Jm6du1Kl112GdXU1ET93w0NDXTddddR9+7dqWPHjnTuuefS1q1bg17DEc7TTjuNysvLxfbdeuut5HIpLeMBAPrn4VPiM0EMDBRpqXUyB6auOyyPHjm1+X7EG7SCpxUAAAAAtMQvK1z0+A8O8d3j8VKjK/cyUrq1Um7LI2VacYfoU5+ro9GT62jcq/Xie+DPh0yupd9X474U6BNNBa1mzpxJF198MX377bf08ccfk9PppLFjx1Jtba3/NZMmTRKBrLfffptmzZpFJ5xwAo0bN47++ecf/2v4PZYsWSLe45133hGvu+qqq6L+75tuuommT59Or7zyCn3xxRe0efNmEbhScbvddPrpp1NjYyN9/fXXNGXKFHrzzTfp3nvvJSNQUlKS7U3QHdA09/TaURvfJCjTHZhCjXVP3qOpx8ab4wsidjEM1PSRU/Jp9g1FNLKHOWwQbp9uZpp2WSFdf5jG+0cbcFzqDWgqB+goF+gpH2iaOtBQ4dslLrrvq0aasdxNm6q81O3WGur1n+qc0rSbLzt/zU5P3B2iA1myxUMnTqkXgS0OcGUbjE25lBhcT1NlZaVmQ9Hbt28XGU3Tpk2jUaNGicc4C+qRRx6hM8880/86zo6688476YILLqClS5fSPvvsQz/88AMNHz5cPM9BsFNPPZUWL14ssrNCqaysFP/nhRdeoJNOOkk8tmzZMtp7773F3/L3b775RgSt+P3btWsnXvPiiy/SHXfcQStXriS73R5zf6qqqqhLly7i/5WWlkrTCQCQGd7+00nXvB/SKjCEsUOtdMUYOw0oT19KUqxuT7zaxpMX5tcbivyeDr+tdlHnFmbqWGYSPlbhWL7VTQc9Uhf0GGeNcRAuUvALAAAAACBb3DvdQU/OaKSLR9no3H1tdPAjddSigGjx7blzo//SrEa65VMHHT3ISi+dV9Bs3sfZVPFgNhHt19OS0Q7WAESLf5SVlYmKtVTiH5q+A+HgDtOyZUv/YxyQ+vDDD0UJIDvov//+++RwOOiAAw4Qz//+++9CGDVgxXDJodlspj///DPs//n7779FVhe/TqVv374iwMTvp77voEGD/AEr5tBDDxUfBAfD9AzrzJlnRu5YIBtoKkevTNfyL9uq/J8Opaaw3lGti4g+mueibxanJz07XGp4uBW1hoC0+Hqn8jOny5/9Uj2NuL+Wlm31RNR05bam3+1WohnXFIqJDwJWzcFxLB9oKgfoKBfoKR9omjrQsAm7b/3O6SaqdSg/F+WZckpTtTxwbZhMq0Qa+3i86elgncicG2NTLh7oSU01JBqDPxQu2Rs5ciQNHDjQ//jUqVNp/Pjx1KNHD7JarVRYWEivv/66yJRSPa/atm0b9F78Og588XPhYO8qzpRq0aJF0OP8PurfhHtfNYAV6n2lwsE0/lKprq72lxryF8PZDhxQ4/0N7AigPq6+Ltbj/Bg/F+5xVc94HrdYLGI7Ah/n9+QDpXXr1s26FvDrI227lvcp0rZnap/YC23Tpk3UqlUr8f/0sE/p/Jz4vQP12lnrpUvfbqSZFU3/c/8eZpEN1KbEkrZ9WubLXrpoPwv9sNxDMyuatnVkdzON6mWmB79x0ewKF112kFX65zTx9Xr6bXXwe3Gq+KQ36umdi/L9r29wKs9Nvyyf+rRVjuE1O4nqGonyrETdW3rJ5VI0bdOmjfibv9Y6afoiN731Z1PAjTe7dxvl72dVuOmfDR4a3sUqVvCMMvai7VPgcczXGT3sU7Y/J/VY53EZbhtzcZ+iPZ6ufVJ15HmLXvYp2rane5+YwGuQHvYp259T4HXdZrPpYp+yPTfSwz4l+znZzMpz7GVV41B+LrYr58JE9inwGsSPZ3KfuvhuQ7k8kOcXakY8f0+msU/FNpeYw8Xa9lj7tL3aTZe85aBZq5qe37+nmaacmUetikxh90nVke8d9T72MrFP7hyeG4W+RndBKzZF5wwm9pkKhD2kOAOLzdf5QGD/KQ5iffnllyITSktwGeP999/f7PGFCxdScXGx+JkvNGwWv379epE9psJm7/y1evVqf7CL4ewv3m/29WLzeJWePXuKlLtFixYFDY5+/fqJgNz8+fODtmHIkCHCn4vLHQMHMT/O/6+iosL/uFr6uHv3btqwYUNQbS0HCzlox0EtlVzYp/z8fOrfvz/t2rVLpCtmep94bPP78Fjgg1sP+5TOz4nHXqBeN//YheZtsTcL3oyfWkmfXdEqbftUWa8Ex0uda+jWfRpoTT8bbaqx0cHDe1D3Fi6a9usqflf6bZWL5i9YRHsMk/c5/TRvI81aVUahcEdADp59/ssS6lbmFPtU36hos27VMvLuUCJYKxp78mWGupQ6aPGileKixBpxYJ236ds/19GTfzRlkjIuD9E/8+aLVPN3/25F7y9pSZccSDS4bZ1hxl60feIJhDouefv0sE/Z/pzUyRKPy8BGLLm8T9n4nFjH+vp68bNe9imbnxMvnnJGvnoN0sM+Zftz4vGpnj/5vfWwT9meG+lhn5L9nLZv4/lRG6qqradah+/21l1P8+evSGifQudGmdynotJWZDG3pGKbm36bu5CKbMr1kD+jfuXltGeHRvpns4083vgCWLs2r6b5rvqUP6dzX6inBdu4XLHp//62yk3nvbCD7h+zKew+qTpu3LiRunXrpuuxl4l98ubw3ChWM7yc9rS6/vrrhY8Vf7FflQp/GHvuuSf9+uuvNGDAAP/jbMbOIj366KP02muv0S233EJr1671P8/Ras6KYpP1448/vtn/+/HHH8V7rFmzJijbavDgwXTppZeK7oMcLOPA2C+//OJ/nj/AYcOG0U8//SS+x5NpxRMfHgxqTWcurH7we/Lg46Cg+ndai0Anuk+Rtj1T+8QnUp5ksKbItIq9T3yzsGDBAqHXyh0mGvNYZF8pLmfr09aUtn2qdXjJYvKQ3Wpqtk9Ol5uG3FtPVQ1E0/6VT3t2tUn7nKYvbKTxrzWdT0J56Vw7HTHAKl7f47ZaanQT/X5DPnVsoWzbw985afL3TjpjuIUePiVP7BuPQb7Y8f/9ckEjXfRGIxXaia46xEb3feULdt1RQPk2E93xRSO9MMtFl4+2081H2g0z9mJlWqnHMTKt5K0mquMy1HctV/cpW5lWrOPQoUOD/j6X9ynbmVbz5s3zX7P1sE/Z/pzUMcqaItMq9bmR0TOtXpzlpNu/cNKJQy102AAbXfFOAx3Yy0xvXZifcKZV4Nwo0/vk8pjIavaG3ddtVS669G1HUJZ/NLq1MtGb4/P8ZYfJfE5LN7tp9KORvbS+vyqf+rYzh820Yh35XpqPbz2PvUzskzuH50ZspcRBsVQ9rTSVacUi3XDDDfT555+LDKrAgBWjrhpGCpyonleciTV37lwR4FKDUvz8iBEjwv7fPfbYQxxQ/LoTTzxRPMaRQxaX309934ceeoi2bdvmLxNks3cWnyOZ4cjLyxNfofD2Bk56wu1T4Gsz/TgPtsDH+ffQMrZ4tl3L+xRrG9O9T3yDyxFq9UZXD/uUzs+JH1P1Wrsr+sWa6/7DmZPL2sbifL5YhNfMbrPSPt0t9O0SN/2+xkt7dpX3OfVoE93YvWdbpRzR5faKgBVz1NMO2quLmV4dV0iLNzeKxwZ1VF7H26WmbYufS5T3L84jOqRvU9DKTXy+UiZSYh8txhp70bY93HGc6/uUyOPp2PbAcRnu/+biPsV6PB37pOqoTizTte2RHtfb58RzyHDX7Fzep2x/TuoYZU3Vm7Bc36dszo0CtzeX9ynZzynPpkx8nG6TWFxkivLMzf5HrG0MnRtlep/s4qHwmVRtS630/kRrUDOe3fVeuuljBy3e3DQ35nnf5moPrdnppbHPOeitCwtoYIfgYHu8+7R6Z/TclrW7TDQg4L3VfVJ1VN+THw9uItQU6Ir0eLzbaIRzhCmH50aRXpPTQSsuCWRj9TfffFOUz6l+UhwYKigoEObonFF19dVX0z333CN8qji4xcGjd999159Sd9hhh9GVV14pMq94FYIDYaeccoq/cyCnKnJm1bPPPkt77bWXMG4/77zzRIYWvyenzt14440iUMWdA5kxY8aI4NTEiRPprrvuEtvG2zBhwoSwgSk9wQOYUwaBPKBp8np1bx39AppM3b9MRvZQgla/rnLTpAPlvS8H4kb1tIgySC4JVLGYiEb2tPgDdQ0BHvDs/bXcZ6y+aLMyoRvYwdxMUzZyv/MLJYtrazXREU80raqxPwRPoJy+/2kNfz0zJDiO5QNN5QAd5QI95QNNUwcaNnHkQKsIeLQpNtOq7R46YoCF9uxi1p2mH8x10s8rXHT4AN5f5Tb++6uDA1k8H9xS5RHNdxZt9tDYZ+volQsKaGSPxG/7Y8+pw8/JQ+eYk95oCPKh5fns/WPz6P8+cjR7/Nlz0K0618ZlJtDUiHjxxRdFltSxxx4rAlTqF3cLZDgbioNaHGk844wzaNSoUfT222/TlClT6IgjjvC/z/PPPy/+jgNTp512Gu2333702GOP+Z/nQBZnUtXVNd2Y3XfffXTkkUeK4NUxxxwjygnZ4D0wSvjOO++I74cffrgIXp155pki0KV3eIWRyy3DpcuD5ICmyeulBm9CL6PcvW9Ur6bgjWyemOGgU56ro0/+8bmcR0CdFHCQKDQlN1X4Qs5BsUB6tjUJA3qVQhvRP7cU0XsTlHbJG3d7qbLeS2t9q2UDyi3NNOXJxLz14ceimrXFGVyMLT3y5iQ4juUDTeUAHeUCPeUDTVMHGjZRXmoW86/ebc0ioPPKBYV05SF5Oacpd+c7aUod3TUtvA3GnLVuemeOixZuDN4+nvsqgTtlkta+1EwfTiqkfbtbhGXFWS/W09eLEu9src652ds0HONebQjbxTp0jskLroHw78c9VRf28UlvRrYAMSoeHOvayrTigFUs2DwsMJgUDi5l4wBYJNgQLvR/sWHZww8/LL4iwRFODpoZDdVMr1OnTtneFN0ATVPTSwRvHqylmgCLJw7mBAZvZDNjmYtmVXho725mOnGYLeLrhnYy0/TLC2lQByW1XCa88nTP8Xm0dItHrLZ9s8RNA8stQStSZrOJ2pWYqGWhSUwyOOjEGVdPnJFPa3Z4/J1eVE1rbR2CVrlC2VbtpY5lTcErG6d2AQGOY/lAUzlAR7lAT/lA09SBhvrTtLbRS7+tdkcMElU1KAuIJcKqIjplBSZ666ICuuTNevp6sZv+WOumIwYmfuvPc+79Hqyl6gi2qmqg6f2LC/2PxZpjcsVAZZjYlGgutNItMsfStQidi3hxrGsr0woAAOKBgzQclGFaFhBdPMomLpbpSCfm1SNeReKAFfPYD86wq0oqHNQZ1tlC1jQFd57+qZEueauBPF6i9iUmyrMqK3N8gQ/djvJSZRt21nnp1D1tdN1hzVcdV++IvmqzuUqZILn8QSt5+wIAAAAAkCrrdnrohZmN9OHfTvLwBClHUU3T1+wMPzer8QV62H80HgpsJnrx3AJ69NR80UQnGVr5FkEjERhoSnSOGQkudQRAs5lWAAAQL9trlAvarnqieRvSly4r0ppXuWOuKmWKiu3Kvh4zyEr1Tie9+5dLfDGcwv2fY/Lo3b+c1KHMRJ1bmmljpZvW7/LQXl3DR5u6tzbH5Wdw/eF2umCkjXq0wVoHAAAAALTDsq0euu0zBw3rbKZvFrto2gIX3XV8Hl0wMrlATbbgjn/MpiovNTi9ontzINU+k/nSODKtVHgR9YwRTRUC/L7vzHHS+fsqXTtjsaXaK7Ki+JXemI2QEptjpsufNtTjC+Q+CFqBmPAJrby8XHqpk5GBpqnp5fZ46eID7DS7wkV/rPHQ/I1sTu4lS7SloCQvepHSmqOlL2+v8dB/pzfSyu0e+nhSgdTPWQ1avfa7k+aHeBpwMO26DxtowUaP8HXgUsXfiejJHxupdZGJhne1UKHdFKRpu3bhDd5Zyt5tTeLvmL7tLNS3nbTd0AU4juUDTeUAHeUCPeUDTVMHGjahZoE7XUQ1DqWLcjKZ4dnWlOdcRXYuEyRav9sr5mHhygOVTtbJlZn96+0G+nKhi+auc9NDJ+fHrAxYtkWZHHZuQbRud3yBpmZzzFVu8lmj+n1oi+1ENY3KnDqQdsVEfdomF+yKZPqe6+buJhzrKA8E8XUs4AMlUhtMkDjQNDW9ODh105F59NGkQnFxr2skWr5VfrZVrPTkSM8X5Zno/blO+n21W7QclgV7U+3y9Y/4e72n2YWef+eAFVNgJ+pfbqbBHczisdNeqKd1uzxhNQ1n8M5lh8u2esXqJQgPjmP5QFM5QEe5QE/5QNPUgYZNqAEqh5uo1ue9VJxnyjlNOSgRrUSQA3KJZlqFvv8RA6wiaMSG7he9Xk/1zujzVPZRZQZ3sooAEP9trEZIoXPMEd2C/4jnnK+PL6COZc33Y2sN0Q0fOZIq84xk+p7r5u5mHOsIWoHYuN1uWrlypfgO5ABN5ejFwauhnSz+II5sYqUnR3qePQT26KxsV2hpoYwsq1ZxVCXyNlwxOo+eP7fAH4TqFVDaF6gprz5xqeOMawpp6vkF4nsPX0p3o6/ZzOfznTR1dmPS/gR6BMexfKCpHKCjXKCnfKBp6kDDJuxWZT7mdHupplEJdhT5MstzTdOuvqDV2jBBq2pf7KUk8caIfs4cYRM+V/lWEgbtZ75YL7pMR0JdvOzbLvwiZ7hGSKFzzI8vKQqaY/Kck43d1+3yUpeWJv/jU87KF5n+b/3ppL/WKf+XqxrCebdGqo4It6AbyXMrV3BrYFxmG5QHgriorq7O9iboDmiavF6767y0u95LbYvZ9NxMs1e56dN5Ttqzi1lq7bra6ndWhTuojp9XlfgiHe1/8fN/rHHTB3MbpW2XGrTq3sZMO9dGDx4V+OwLvlnsFN+7tjI1SwEPHYO8jaofgd13dVCDVs/90ihKMV8415S0R4EewXEsH2gqB+goF+gpH2iaOtCweXlgnS8bqSgvNzXt2cYkMpC8YeJIv/+7SJQIqtYNyXLkQKvoLHjBK/WiKmDss3X01oUF1L60+fxuxTZlvtmvvdm/yBmPZ1S0OSazcKMSgBnexSK2R30Nl3byPLtHG5NofBRvqV881RGhnlu5RLXBj3XceQAAcg6uxd/vf7U0/tU6+n6pElX5YZmbRk+ui9rZLxn44rh/r9irSoHw//9uibJdv6z0SNsu9shihnS0REzR7tVGmchwfIr/538+bxS/L9/qTWgb1FXLRp8JgVPtHijZNwwAAAAAIBXsvmkaBzxqUigP1AK3Hp1Hc24qpgv3b24iz76k5aVm0SE6VUb2sNKHEwupXYmJFm/20Pmv1AvPq1DenaBkQR3StynXhYNLHGji765As6oYsP8sB8E46LVwkzIfHdQxeDJ72nAbnbyHLeFSv2SrI0BugEwrAEDOsd0XeOE6++21JLWzX+jqUSKrSip8oVU9AGRtF3PsYCu1KTLRwA5m4VfF78cpz4HBtP17Wuh/3zTSvI1u2pWCNlxOqE4AGZcatMJVAwAAAAAaLQ90+DLEkykP1AKZNNse1NFCn15SSBe+Vk/3npAf9n9zgCzcvPfH5S66d7pDmKY/daZiRRGJd+c46YGvHbSxUglwHTXQ6s/gGtTBIqURklodEdpYiON7I3tGr44A2ge3HyAmfALr0qWLoTsWyAaapqbX9hqv36wx0c5+iXYc4ZbJA8qV8r540oqT7TgYD+zfpXp4MRx82uf+atHN5bHT8uj0vez06PfKEuP2GNr0aRt9DKqp9mp5oBq8siE/1w+OY/lAUzlAR7lAT/lA09SBhk2Ul5qEsXeBle0MnKKErjR6HCXnNN1S5aH7vnJQ2xIz3XJUCqZWIXRrbaZvriwkc0AmfV2j199tOtri5vwNHlq/y9Osg3eojluqPSJgxf5V7GPF9hk765S5/OCQTKtUSv24OmLSG/U0s6IpasXvr1ZHJLIArSVMGh6XmQK3HyAm3KmgdevWhu5YIBtomppeatAqGu/86aSGGB1RAgmXhjy7wk2HPlZHw+6tibusLtmOg/EQzoyypa+uv5Xv+/j97HT/iXkxtyHWGLT7Us8dLmV7Xb4uLtbcucanHRzH8oGmcoCOcoGe8oGmqQMNm+AAy6H9rLR/LytNvaCAPpxUGNb3KBc05a55pzxXR8P/W0PbqpvmnluqvaLj3wd/KV6lMgkMWM3f4KZ9HqilaQucNOVnB536XC29ONNXcxnAiK4WalFAoqu1apoeSUf2olUXg5kdtV7h2cXetO1KzNJK/fgzf/yM4GjlufsqJq9skcF2HeNerU+LnUg6MWtgXGYb4+45iBvuVLBkyRJDdyyQDTRNTS++2MXimZ+dIth0w4cNYkUnXJ2+GgT6apEzbMcR9ddtNUQT36iP6+KWjpp6/r8nTqkNe7Et8Xk2VDco+1dWYBJp0LG2IdYYvGh/Gz1+ej4d0Msa5GmlBrMAjuN0AE3lAB3lAj3lA01TBxrqU1MOIK3Z6aFNVV5as7Np7qrO84rz0zsPe+U3p5hnX/R6A935RaPIWrr1s8ZmQR5u7jPa53P1rc/HNZKOu+uasro6tzDFnBOrpX6hU072bh3VK3qp38bdwfN9zgZL1B9La7g1MC6zDYJWIC4aGnLjoM4loGnyeu3wZVoNLDc3MyPnxSK+IHLnlaoGotd/d9IJz9TRAQ/X0nu+1Sm+6AauuIx7NfZn8dtqT1wXN/+F1pz4hTYSfLH9c014jyx+z5OGWUVqfKLbEG0MHtDbKswwe7U1BwWtkGkVDI5j+UBTOUBHuUBP+UDT1IGG5PeyeusPJ73ya6P4Odc17dZKmXtx8Co0aFUauQ+QFDhbn83ZQwkX5BnTTwlaqc2HIum4q97rN8zn0kMV7kodKeOJS/1G9jAn1AiJ2VQZ/F5/rHGFXZgOtMzIBRo0MC6zCYJWIG2EK2XS8vuC3GG7L9Pq9mPzxAUskP16Wmj6FYX0x7+L6L0JBXTacCsV2okqtnup3lcuKFZcViU2fhK5uCkX2pCOg92bauoTQfXI8lXnNdueYwZb6ZmzCmi/nsrE4cO/ncLz4F8H25tvQxwX+0g8eUY+vXpBAXVvjcsGAAAAALQDz5Gu/aCB/u9jB3W9pYbGPBrSiSbHCBe04oXYTHRF5E7VW6u9cc2DD+lrIbZZ4k6AG0OCRYHs8pUHvjPHSbvqKa6MJ9EIaWIRtS1Wfuf5K3u5xir73OAze9+nu4VuOcpOJwxVygPTYdsBMgeM2IF0Ihla8418MvXl6X5fkHucs7eNNld7RRe9aJ39OFuIv+470UtfLHCJ9ryRjNLjJZL5YyD+joOb3TThjXrasNtLD51SkNQ4TdSMctoCl9jX+0/KS7jrYSDLtrpp1famvxvlKxMEAAAAANASoU1i1OYxuUrXVkpgam1A0KrGocwHS9JcHpjIvLNNsZmGdzHTnLUekW113r72sH+jelot2xo9GBZuntq+xEzbajxx7/fG3YpmI7qa6fLReeJ9H/i6UaptB8g8uNMHMWHTt549e8Zt/pauuuFcr0dORVMtksmMt1C9rj88jx46OV9cLBm+yHFAKlJQpijPRKfvZRN+T6muqCRycetXbiGr2UT1Ts70Ss7sMR6PLO7aoprOq9lkBTZTVG1ijcE3f3eK0kluUwz0exxrDWgqB+goF+gpH2iaOtAw2AfKGiBDkT23NVUzrQLnrNW+oFVpmjOtEvVmPWmYjcbuYfXbSYTTkfcn0MYiHJHm551amkXXQU+c02juUsh0LGu6R+BqB5m2HZnGrJFxmU2wdA5iwu01S0tLxc+xsjYiZbHEiqLHIl3vqwVNc41sZLzJ1CvZFRW+uHF5XaLjrEcbMy3Z4hFBqzH9Ev+/4mLbw0y/rvKE3Z5vFrto9ORGOnuEjR4+NZ/qfYtJBbbUNLVb1e6Byu/sFcH/87ghXG6JValcP461CjSVA3SUC/SUDzRNHWgYjM3CnY5TK6HTiqaqFUNgplW1Wh6YZk8r1ReVEwMCfaAizYMnjLLH1JE7OvK9GnvJJjo/n3p+cDfAWKjNmjqUmWhLlYc++sdJK7d5hOdt4J0kZ2Ila5mRaUwaGZfZxLjhOhA33Knglz8W0inPhu9elmhKaTKk632zqen8+fNzsgtENjLeAvViI8rVOzz+NOlEiWRSHotk/aB6tVH+UbKZVszlB+dF3B41o0pdgfNnWsUILMUag3m+JQ02YOfOi+wVcdV7DVSbpO56JJePY60CTeUAHeUCPeUDTVMHGgbDJt8qxc2nTTmlKZcHdig1ieAVZ9Mz1x1mp7k3F9GVhySZRpYAYb1ZE5gHh9MxHY2KwvHhxAJa/J9iGtbZQqc+Xyc6IG6rVeazPduYqLxEed34/ew5Yy/j1si4zCbItAJxcffPbWjhtvDdy9g3J9mU0njp3io975tNcvHEk82MN1Wvn1a4aMLrDbR3NzN9emlR0hdjHru8zdG494Q86tTCnLAfVCA9fUErNrZMlhW+Y48v6hePsgdtj7qaqAbxuBQxnkyrWGPQ7rs6NLq8QStt3OIY5PZxrHWgqRygo1ygp3ygaepAwyZsIkNcmQsVpZARrgVNOZjy180+B3IfvEipLlRm4v8n4ovKi5tcVcAG7gf3sUbUMdz8O5UmQZGykloUEk14vV40YQpkzU6vr0zRSx/MdVK+zZTSHD+TuDUwLrMJglYgJsu2emje1qbAVLRAhRpFn72qebczvgkObTcaL3+sjXyg8qlnTRzm2CB1EjUFTwfba5RtSGV1RL0Yf7WIfZsiZ4jJWPnp2VaZYFSEBH0T4bThNhH8Ksoj2t/XJVBFTROvcVBQphVfiFPB7gtOOdxETk9w+j0AAAAAgFbN2NnLFKQOz4Hjmdd/t9RN502tp26tTDT7huAF5SWb3XTOy/XC8+rdCYUJNwn6epGLJn/voD06W+i+k/JTXmTn5kjMN0vc9M0SpZUhGntpH3wyICZcipVIIIMP+r7tgi8W+TbO2CA6/pk6Yd6dCFzPfcfnjrAZVS0LlTWVC1+vF547IL3m6rEz2rxpN2ff4QtatSlOfUJy5EBb2lOV1fJAbsGrmqUnSqsiEx0+wNosYBU20ypOT6tYqOWBfNxySrUKglYAAAAA0Br/OzmfjhpopYHlZuodYAqe63AWE/PEDAfd9llDRhogJcp+PSyiPJMzmdTqgECPKTZH31zVNAeO1UApEF6M/Xu9h5Zuib34u2Cjmy54pY4e/T5yt0Am9A4iVxt7GQlkWoGY9GzDwyT+VqEcpWZTvus/5Ki4mR49LV+0K534Zj39vMJN41+rp1uPyqNLD7KJFM5oeDxeupp9dBqJ9u1uoQ8mFoiToRqd5+yTGz5soHfmuITnztYaD1052h7zfbMNd3/o16+fZrpAxGuuHsmckWHFA7OWZK5aBOqlGizKCFplIlW5dZGJhnU2U3mJWQSWUs2ACqUkJGj14aRCqmv0CgP4VMZgYHmg0+2N2FbayGjtONYD0FQO0FEu0FM+0DR1oGEwh/a3ii+9aPrKr430+A+NdPwQK91xXD59/LeLFm320KH9ONhDmoIz20b2tNBPy9303RI39T7Q5tdxV52SrNCiwJT0wi2jzv+jsXyrh75e7KahnaJ/ft4ca+xl1tC4zBYIWoGY9G1vpv17mOm3NZ64ukgwVb7YBaeCqs+/Mb6Abv3UQa/+5qS7v3SIjI2LD4huJvjCLKcoNSy0Ez12Wj5ZzEoaaeDJevKp+dSupJGemNFI93/VSFX1XrrtGO13g7Db02+kKMNcPdCzbFOlRwQLG1xmmrO2aTBwR47QctBwfy9Dr+2+ixYHg7JRt58oHECdfnly3lvMX2s5fdlFB/a2hM204pLBwKBVIquL0cbgiG4Wuv+kPOraykwud9PnzG2lgTaPY70ATeUAHeUCPeUDTVMHGupbU85QUita1IY7JfnanIcd1s8qglbfLnHRpANtfh131Xn91THJ0KpQ2d+dvveJxqbKprkwL+qGLrKHu1/JtM2JHsZlNjBuuA7EjcfjoSv3WEkjuwcPl2jZKFUNyhmhLODEarOYxE3wPcfnUf/2Zjp9L1vMdNg5Pi+r24/No26+9q/hggI3H5VHdx2XJwJh+/ey5oSm3AWCv2cbte47NHMqcNVB5aVZTnrjD5fwO5pxTaFoQzv1/PywF4Bwfy9DL9XTSlamVTKpypnku6Uukeb89p/hy185eDemn4UO6WuVOgb7trPQBSPt4n0b3c078wBtHcd6AZrKATrKBXrKB5qmDjQM5qflLnrvLyet3528HlrSlBcNmdU7PUGLkyUaXZc/zJfl9ttqN+2uc/t13F2vBq1Sy7Ti4BdX4ERjY6WiVccW5rAdELnyIRqPfu8Q1Sdas2rxaGhcZgvt390DTVCW56F3Lsqnd/9y07UfOKhDGUXNoOFsJ6Y0JBWUA0wXjbLTefvayC66fCjBqS3V3M3B3Oy1U87Kp9OHu8VNeSw4a+uoQVbq0jL3Y7HpyvpJxVydL5av/aaUiU460O7PeIvlUSZ71cIftJKUaZUpeJxzZ7/CBDvazF2nXLSGdwk/DtoUm+mN8cqxyGWBT85opAI70WUH2aVlRXFg7IVz88lnqwAAAAAAoCke+tZBf6xRbupfPi+fjhqUorlnlunmC1qt2ekRwRq1ikW1hdAabEvRq42JVm730k8r3NTN9/huX4ZUquWBvBjOGnBnwEioJuudykwRKylOfa4urM0JM3+jR2qViCyrlhYaDVRmkty/uwcZ5WjfBWBTZVO6ZzgqfZlWpRFSWNWAFfPCTCcd9HAtfb/U1SzCzIErrk+P16MqMGDFBvJnv1RH26pzJyrNJyw+mY6eXEfjXq0X3/n3dEX9OZASy1xdfZ6N7isb2FjcRIf3bwqgxPv3shjd10IH97Ek3YkyG/DY7n9nDZ31ktKlJJHP5+/1ysVrjwhBq9AMx8nfN9IDXzdSqrZuPMn4ZYWLfl/tEoG2Ywfb6LghuT0BBAAAAIA+4YoOFa1728ZD5xYmUc7W4CRat8vrn/dGurfSAqqn2IxlTYGXXXXK9xZJZlrlWU1U7LPCiFUiqGZadSgzR6yk4CBQJM8rmVUiiTa9imbVApBpBRKETzjczpS7Q3CHhgN7hx9C7UpM1KedmcpLYxutf73YRdUOonNfrhcBjlUBmT/Jmnnzzf4V79TTn2s9dMKUOnrrwkLqHqG8UEvE6y2VKqzP6787Rd35y+cVhDVXD/Qsc7m99NwvSpbVxAODM3gimbPzS/brKacDH1PpMNPpLzTQrFXKP/lxeX3OtKjlTCVeHVq1PbFIG68M8cWeO/lxN5xouD1eqnU0dQ5MdcLGx/dpL9RT33Zm+vFaXCoAAAAAoF0CuxurQY5chhf4O5aZaP1uL83fqNwb8NSOfX61yrn72IStxD7diJYtbpoD84J3x4BAUqJ0bWmm2sbYXbjZA4xh3SLB9wxXHZInkgMy6W0VLZPqzzWKVUukINqyrTm0Up8mtH2nBzQBdyoYMmSIv2PB0E4WcWFQUzDD8Z9j8umna4to7B7RMzM4+MEG7WeNsIlODoEBq1QizHzD/vjpBSLAxiee45+po3kb3JrVNFFvqVTYXuOh8a820I0fOUSHjY/nucLWfQd6lk1b6BIXTU7RPW1488803N+3LzVJ68DHOj3+dy/RDCAXVyC4yyWzrYbTu+OvsZvry7Ia3NEclJ0Yyv7/q6HON9f4PeAK4uhQGG4Mhu0e6PbSzlovffS3k75bEr0U1GjE0hAkDjSVA3SUC/SUDzRNHWgYTKDvZlGCVgxa1VQtEVywUZn/luRpO4usTzsLje5rpQK7xa/jLUfn0S/XF8f0Mo7Gd1cX0a83FtPADpEXwrnTdX2jL2jVIrUqENlVIpESE7jZ2Kj/1QZ1Xw/Hmp2kqXGZDYy75yAhGhuVLBvmvyfm0fI7i+nMEXJKhfhmfNIB4d8rlYAN11Z/emkhDe5gFj5IJz9bRz+vcEVMy8ympvF6S8kw9R7zaB19tZjN1IluPyaPThpq9dd9v3KBEmTizJ63LywQj3NW1jM/Kds6fqQtbEBE/Xs2Z79mjN3vr/RrhZxg27ItHpFhle6AXrrgTi9tfcbxFQlkW6l+Vnt0jp6tpia+batR3ps9rZIZg4GoQbJGl7LN/3q7gW79TPsBwkwTTUOQHNBUDtBRLtBTPtA0daBh+PJAtbNyrmvKxuF7d7OIxcu/biqiL1PoRp1pMq0jf/58f7rk9mJ/x8FIqFUiXFUSypCOTZ3vZREpMYF95dl6JRY9Wps1NS6zAYJWICbcqWDp0qX+jgVs/Mz1xTJZvTM9AZt2JWb6cFIhHdDLQrWNRGe8UJ8xvygmUoAsVNN0R/3rnV665ZMGUYLJ2T5c8jXtskK6JMSsm9vVluZzdg1RxQ5l25xuolG9rKLkc9x+0QOVfJIfN9ImMvEq64kmvNEgRecFG2ObvedKtlUiQaulW5TXDu8a/eJZ7PM32FbtjTvTKtwYDIQDlwyPBc62YqySjN31QiwNQeJAUzlAR7lAT/lA09SBhpHLA4uSNCvXmqa3HZMvFuDZU5R9mtS5pJbZXOWhOz5voPEv78q4jpyFVlZgiisbLVyVSMtCoqfOlO96nux9CgfVRvWyUO+2pKlxmQ1gVALSwkGP1BIveLxxYUFcNczpDNhwlsvr4wtor/tqaEctpd0vKlbdciT/JQ747N/TTLNXeYK6tAV6SyXLFe800BcLlMDPhFE2uvmovLCBDQ5gfTBR8f8q9l3wOePm1qPz6N9H2INWsSLBGTkutzyd/1jjpnumN2Y8jVc2vdqYRRvgRHytONttxXYPtS+JfgwV+9Lgt/o6K7KnVarYfZ91o8vr/zwDJ4QAAAAAAFpEncOCzMPrm8/N5HuOErFQPva5GlGu+daFBdQ2xnw2Eq//3ii8eI8bbKXLR8sxLAvtLtiphYkGdTCnpfwy2fuUJqsWLxkd7YdrgSa5/ysHHfFELf26yhXWEHr5Vg8t2eIJqi9PJk1TjTCnmqbJnQRDA1bpLC9LtgPEc+cU0P49I3tLJcvVY+yiC8mbFxbQ3cfnR83EGdzREvZiH0/ASk1/9UrQmcfRI986aOyzdbS5ishm9vjL4GSPj0zQs62y8SsTCFpxELFvO4tYNYqG+nlxGWy8mVaxUI9dLg90+jbZqn2ZAQAAAGBAzvDZlnCmeKHOmh3PWumi/3zWQB/MdZLW4SqXoR2VG7ppC1wiILRwk0d0ok4W9lb9Z72HVm6LPId++08nnT+1jt77KzGN1O6CfP8TGLBat0teVpN6n5sIU8/LF0E1rTebyhRQAcSFxRJ8oHEXg/kbPPT3+uYHdHVAXCaRtqyxzMDTmZb543J5BtPxGqqrmvLvD3zloL/Xuf1Rf/Vi+8a4goROWGo54k8rXPTJP00nbT4Rz7qhSHT0SISpsxuFDxj7WsWDTF+uCa830P++bRS6nTTMQi8ct4H262FOy/jIBEM6WujQfpaY/lTJUOyTYM8uFvryskK654S8pI7rcEbsDjeR06V8bvEGoY1ENA1BckBTOUBHuUBP+UDT1IGGTfAcd9P9JbT6nhKyxrHQmgua1jq8tPf9NXTK8/X0/Eyl63cuMKafMl9//2+3P1M/la6H3AiK2VkX+T7i7/Vu+maJOyEbjkiWKle/xzYytVGDZInC97m80B5IWT6JyqRQ2HD/0P5WzY7LbIDyQBATPki4Y0EgQzuZ6cuFFLYjX7WvO1q+rcnMOZk0TU6llJVBEyst8/bPG0UQ7sYj8qhLy9RiubECM0//2EjtSs00us8AOv3FBppVoZwQH/2hkfbpbqaXziugyw62E9sIDe1sTroc0eQ7yR/Y2xp3ppSa4XT3NIcIsHG2nMtD9MW/CmP6Ksku8zxtuJV+Wemi+07Kp1P35CjeQDpif0rL+MgEB/Wxiq94uXe6gzbs8tCF+9tpRDdLXJlWVjPRHl0sSR/XgZQWmOi2o/NE8Ip9zZT3R7p9IhqCxIGmcoCOcoGe8oGmqQMN9a8pB3oCu07nStnjEQPt9OgPLpq7TrnHaRGnz1QkVGP1HbWR77E27lb+V4ey1DTKsxBt2O2luka2PKmnzy4tTOh+NpH73DbFJlGFw/dcKhzY4gX5wMCrRWPjMhsgaAViwlk21dXVVFJS4j/hDOmk3BjP29A8Al3pO7mWJZBlFQgHIvq1T2mTI6ZlcoleYAYUnw/YdG97LdH7c1302XwXXbi/ja4cnUctYnSeCEU9CfGqSDS+X+oS/+/JGc2fm7PWk5T3kyhHXBUcQOSt4AwuNWgVL7vrvTT1Vyc5AhZz7p3eIEoXY2V8RdQ5Dl8u7ja4YpuHhvrG1jGDbbRvD4u/g6E6BtMxPrTI9IUuocfJImAXnQHlZjqkr8XfGjnZ4zoQLjH818HKsthHfytZe/C0SkxDkDjQVA7QUS7QUz7QNHWgYTDLt7qFPUnXVmZRYaAHTXkbeH8WbFQm1SW5UVxAQzuaqHWhl3bUKRq2TPCeKmKmVbSgVaXyXKc4vJRjWXM8fno+HfpYrbjPffCbRuHtK4vQ+5h4Eja8GhuX2QDlgSAm3KmgoqIiqGOBWqvMKZg1IUGaqnqv3wBdS4QtP+xpoRnXcgvZQuElxYGaZ35y0n7/q6G/1rrj6gTIWU7cHU/tSnjZO+F9qzhww0br/z0xnw7sFf7QS8b7yV+OGOY8PmedJ2G/Lg6AsY9RIL+tVoJp6SrznL/BTUc8UUdnvlgvuo6oqEGycGMwV+ELbugxEwqvqnHAitkjjmy7C0ba6c0LC6lLS5PI5GPvg1gkouleXS3iAq4GsQDpblxqBWgqB+goF+gpH2iaOtAwmOs+aKCLXm+gwx+vS9qrVouaBi5IluRIphUvne/ZrrpZR+pMBK06tkhdI+7U+NDJyn3LUz820k8SbGSue7+BTn62jn5Z4YroqxVpcd+jwXGZaZBpBZKCuz90KDXRpiovLdjoppE9moaSmsZaVkCaIlr5YesijnQX0PdL3XT3lw6qrPdS/3JzXJ0Aw5muM8V5RDWO5oEb/hur2UM/r4zcEW/uOuX9uPNirOBfPD5S8WYmqQGwaMG0WCV5gTr/ucYtOocc1t8aNkvL4/HSczOd9N/pDlGCVl5qos2VXiovJV1y0Wv1NG2hix45JZ/O2jtyBtU/65XPoGsrTh2Of23h+2VuenJGI008wEb790r99M4+aw0ur/DKOm24zlxNAQAAAKALeK6+aFPTDT0vJMfq2p0rdGvVdB+gtYSASHBwafnOpuyk+RuVBf5kP4/WvqBVZQNbVnibWZ5wtcYun99VPF3r44ErPs7b102v/eakK99toO+uTs0UfWaFi9bs9JInhr3vYY/VisZKH00qpB5tcnvsygRBK5A0XMa1qcolvKBG9mh6nGtwe7c1i3RWLRKpvIzTLdn0bnRfizipqF0uJr5RT7N9vlMqs1e56cQpdXRQL2vYIA/DAaup53OU3tQs3bN76+jaPD+zkRZt8tLL5+XTUYNsGfORkhkA4/199mcnvfWnU/ichaZqb6320FXvNdCMZYp+Rw200sOn5PtXU/QIB+WYih3RV0r+8gUt90zQtL2+UV73QGbsc3XU4CT6/cYi6hIwaQIAAAAA0Aq8gFwbshasdu1O1HJDa3QLuGfg4EwucMlbDlpXbZf2ebAnFpuWs3UL31+xtUsgm3xZVuwBViqxhPKOY/NodoVbVD9c94GDpp6fXEbG7jqvuLcMtNiJxNZqr1jwZ0N40ASCViAu8vObnwHYjH3pVpMoewuEs2r4K1exmE3Us41yg87ZQqpReiAcJV+5zUsrt8Vqq2oS6Z6h9G1npj3KHTR/a15Y7yelWR9nucTeXtVHKjR4Fo+PVDoDYMx+PS0iaMVBvkC+W+qiq99rECsJ+VaiO47Lo/P3tUWt0w43BnMNdcWkIkY3EtW4kjOc4uG7JS6a9Ga9f8JWEGcVXyxN2YySg1bcLXTRZg91amFK2idCr+hhXGoNaCoH6CgX6CkfaJo60FBOlYBWNeUMsld/bbrXuO8rLlVzazqDTNw7reJ5rEnK56Hemy25oyTi85xlVWRXyvpkej5xAsMzZ+XTBa/U03n7Jl9xMH9jUwVFLH8vtZQy0FtYa+MyG2hztANNwR0L+vfv36zV5jWH2mn2DcWiu5leiZV5NKKrOakgD2v5+sWtIno/cedFxhErJuaDL1779TAn5CMVLQAWGojk37mbRaIXGQ5aMf+s99An/zj9HgNsMs4Bq4HlZpp+RaHwZIp2kYk0BnONnmrQKko7XjZbVMtD9+wS3ynaaqGgFcZ4Mq3i0dTm65by8T9O4dc25efIJa1GRC/jUktAUzlAR7lAT/lA09SBhvFXCeSqppxBtmSzJ2zGkhE+j3jhLtvL7yymr66Qn1XHi7WzbyiiQ/sln5Axb4Myr1ebTUUjzzeHbwjItLJobFxmg9xNhwEZg03fdu3aRS1btiSzuekm2gjdC2JlFj10Sj7d8okj4W55wkivYRe9e1FLWr7N28xjK98XLGA/oXjg1ZYPJxXF7D4RbwAstP1qMgEwpsCmrBjwasElbykXWA6KPXpaPnUsM9GlB9kpP44AS6QxmGv08gWtVu3wCD8v7lASCqc9tys2iYYG8WY1hRpzsu4yNLX7/r0aELOHeAgYHb2MSy0BTeUAHeUCPeUDTVMHGsqvEtCSprIzyDKF7KqNeOH7Ui4PTAd2330Zs363h9oUmeK6f1HhLoTMsE6xxxRXoIRmWnk0NC6zhTH3GiQEZ36sW7dOfI/0fGNAcOXuaQ10yORaeu+vONOENEw8mUfJdMsL1DRcx4g8X9ChPkEJY3WfiAfVSH3GNYWidpu/8+/JpCGH60TIAb6r32+gaw7Ni/uEH2sM5gqdW5rIZlEuRBt89fehsMnmN1cV0ZI7iv2+arEoCunEWxDH38WjqZqiXOvzUOCMLqC/cakloKkcoKNcoKd8oGnqQEP5VQJa0jQbGUsyYL3372Ems8krpWpD5ZFvHXTkE7X04d/Zu7/8cqGTDn20VjSQSgS1wVI8mVb+ahuXNsdltkDQCqQEH7T976yh1393Bp1El2zx5IxZYCxiBaVkBnlUCnwRfUecmVbvz3XSDR820A/LUm/JKisApq4QeaOsEBkNrslXWxdHKxFk8gJWdWIR2k0mnkyrRFaW6hzKp2jDFQMAAAAAGiOZBWStk62MJRlMOSuPhrStl/p58GIvZyytCdPM6NZPG+j8qXX0x5r03ltw18KqBm6Y5RT+vPHA3Q57tTVTm2JTTBP2wPl/vPeARgHlgSAlOGuED975vlpdpqpBOchKc6QtayzUoFSs0rtIXQmTQY2yswl2PMxY5qIP5rqEwd8hfbVxWMvsRKgnThxqFYaRbYvDHx9uj1cEtxKhOKA88PVxBTSss1na8R1YHqj+DgAAAACQa3P1XMwgS9SCRAtwJ/D7x2yivPaDaO2u5l3Uk31PZmdd8/sLXgznhIkL909voIcbjV20v41enOUUDaW+v6qQ2paYYwa63hhfKLKk4rHW4Q7z3G0w3moLo6CNu1ugeUpKwndsGNLRHFSry1SqQasCfR1sMoNS0TRlOH2WAwRsLBgPataOavStxxWiaHrlEtcfHlLLFxKwGnJPrdDmlfMLYl4IVbhjigoHrNoUm6VoOm6kjXbUeunPNW5avFm58AJ9jkstAU3lAB3lAj3lA01TBxrKn6trSVOZPrOZhnXs3s5MAzrICa619nXd21nbPDC1sVK5D+pQlv556q1H5/mDZGx3wovF8QSj4vWCfviUfM2Py2yAoBWICXcq6NWrV9jnhnZWTkRLt3pElwP2KGIDaT1lWmVaU+aYwTbxFQ8cua/Ypr2glcwVolh66YVlWz0iC4s94tQVpXjgzKwDelmE51S85e7xaHrOPko07OZP2ETfDU8rg47LTAJN5QAd5QI95QNNUwca6l/TXM0gS4eO6ryYF1MDqXF4RdUP06lF+u+D+F73mbPy6egn6+j7pW6RdTVhVGQH+FqHl4pCGibl+rjMBtq5wwWahTsWbN68Wel4F0KHUhO1LjKJoMRiX0tW9cRRqv1FAE1qmih88q5saEop1aPHgEy9tACX0C7c2Lzufu465bFhndlQNLEL3HsXF9KRA6w0baGLKn2BY1manjjMSveflEdHDMA6h57HpRaApnKAjnKBnvKBpqkDDY2jqYxGS7muY6TywA27Pf77zkC7jHTSv9xCtx+rVE7cPc1BSzZH9tI69LFaGv7fmrDz/lwfl5lEW3e4QJNwJg8fKOE6FnCq41Bf+855G9ziNaqnVZnOygMzpSnDJvbcUnVLVeyT0yqfd1SnFiYqSKD9aiaQZVIfS69cYmu1h/rdUUNHPlkX1HWTmbtO+byHd0luUnLXNAf938eOuIJW8WjKY5CP615tzHTBSDvtmeR26RU9jUutAE3lAB3lAj3lA01TBxrKB5pqV8dWEcoDN/q6cXcsy2xY44KRNrFYfP5IW8SkAfamWrPTS5uqvHFngU3+zkGjHqqh537xGcpiXAoQtAIpo3ZCYF+rBpdSota+xITywBR47y8n7X1/Ld30SeyWqmppIAcWtEqurRClEzZgZw8qzk5cuyv44vO3L9Nqjy6Jf5Z8Iat3yu0eeOcX3F64jj6bL68rJQAAAAAAAInAlT2cTVUSkk21yedn1bFFZu87OXHjhXPz6e7j80XJYDh44Zfp1spELXxBt1iwTUjFdi9tqzFugCocqPUAKbNPdwuN7msRpuyc6fPTtUXZ3qScR82YYp+wWKjmg1ryswLRL3I92phpwUaPCDj2bmv2Z9ct3qJ8lslkNF3wSlNr4QJJHUfUboFctti7rUtsa4cMr2QBAAAAAABj0621mZbe0dyMvL5RaUiU6UwrxhrQoIibKa3c7qG+7SzNglZDfQke8ZDnuwd0xHEPaCQQtAJx3WS3atUqYteDQ/tZxReQp2meT05HHAku1xyaJwwAHSGlZkbSK9fopQatfF0fmfkbFcP68lJTUhde1deMybfK0TTPd4197y+X+GJfKy4TBPocl1oAmsoBOsoFesoHmqYONJQPNM09HS8aZacL97eRK4t2T9trPHTR6w20fKubvruqyL/Ay1VIjGqlEw/5Ye4BTRiXKA8EsTGbzdS1a1fxHWRG0/wEMq2YknwTtSnW7+ejtzGoZsXxioxKnsVExw62Jm12HrDYE7Tyk4qmdqspbOYV0Oe41ALQVA7QUS7QUz7QNHWgoXygaW7qyMEcWxxz33TBljj1Ti/tqiO66r0G8ni8QZlW3GApXpoSF5ruAc0Ylwhagdhwp4K1a9fG7FjAUeb35zppzKO1dN0HAWkfIGFN1RNWg8+jyOjEOwZzhZ6+ksDATKs9uljohXML6IGxybXdtFrka2oPiZ9lc0KgRfQ2LrUANJUDdJQL9JQPNE0daCgfaKptHf/v4wY64ola+nWVtrxWeZH36TMLhKfszyvcNOVnp9+EnRnSMZGgla88MGAXPRiXCFqB+Ayed+7cGbVjAXc6GHJPLd30cQMt3uyhdbuMe1DJ0DTfZ6Qdq+SPzQfPeLGO/vOZvoOE8YzBXKJn6+ZBq1QxB8STlm5xS9FUvXCqINNK3+NSC0BTOUBHuUBP+UDT1IGG8oGm2tZxxVYPzd/g8XcM5Pc//ulaOn9qnUieyCbs+3rPCXni5/u+ctAn85x0WD8LHdzHErcJO5Nna5644MW4RNAKyKGXL3OkxtfsDp0DU0MtD1S7wUVixTYP/bTcTd8vix2kANo6XrhV7qUH2cUFiE3Y1+zwJH0x2lHrEWNBZfTkOjr1uTrxeCrYQ4JUVlwxAAAAAABAFmhdrNwf7axV5stVDUR/rvXQN0vcVCipCVEqnDXCRkcMsAh/rf/72EHfLnXTj8vdCc3JWxaYRLfBNr59BQpwzwZSCO2KgKBVarQrMdE5+9hEe9doqJk6PVtD71yirMBE95/UVAY4c6WLzn+lnvbuZqFPLy1M+P0mvdHgX3VS+XW1mya92UDvX5z4+6ns19NCbq+dHv+hUfxuR3kgAAAAAADIAq0Kg4NWagf1loWkiaAVe2vtrm++AJ3InPz4oTbxBYJB0ArEdQCWl5dH7VjAEeHSfCXizfDPIHlNuXvcQyfHFnGlL7tGNfY28hjMZeauUzLlerZJfP+4FHBmRfNMO+5EOHOlWzzfr70lKU0P7G0VX98vdYluh4n6ZukdvY/LbABN5QAd5QI95QNNUwcaygeaalvHVr7F/J11vqDVbuV7Ml230wHPuX9f7Ul4Th4LE8YlglYgNtypgA+UaPBBxCZz6s1zaYFxDypZmsbDqh2+oJWvPFOvyNJLS3BJIAcd2ez8L1/Qas8uiV/IVu/wxny+X/vUNL3kQDttrfZSH52Ps0TR47jMNtBUDtBRLtBTPtA0daChfKCptnUMzbTa4Mu06limjfvOZOfksTBjXMLTCsTG7XbTypUrxfdoDO3cNJwcTuMaxcnQlL2NdtV5aXNVdJ8jtTywl84zreIdg7nECzMb6Ygn6ujJGY30dwpBq+4xSkMjPR+PpjUOJbC2bw+L8N/q0krf4yxR9Dgusw00lQN0lAv0lA80TR1oKB9oqm0d/ZlWvqDVJp81RscW2pifJjsnD2T+Bjcd/rhiLq/ixrhE0ArER3V1ddTn2VzuuyVNvTkfn+GUYgRtVE0bXEQD76qhPf9bS7WKnVAznO6mVqp6Lw+MZwzmGupn9t1SN1U2cKc+ogHliX+OnGY8qqeFLCF/yr+P6mWJmoYcS9Mv5rvogIdr6d8f6bs7ZSrobVxqAWgqB+goF+gpH2iaOtBQPtBUuzqy129ZPlGBXfl9425tZVqlMidXcbpJWHIs3Rp8D11t8HGp/ztdkBHYCHrltvBG0CBx8gLOaQ0Rsta4XIsNvQtsROWl2jhZg8SDVpxRxwzpaCZbkkbnz56TTyN7BF8I+fdnz07NXI5LF5nfVrlpzlq3KGkEAAAAAAAg0xzUx0pL7iih18YphuZmE1GRXTuZVjLm5LyIzThidJA3GvC0AimTrBE0iIzZbBInLYdLyboKR6cWZlp4W7Eo4TKyMV+u0r118AU2mdJAldZFZtGRhI81rpfn9GMZx5watOJsv+OerqPvry6kAeU4lgEAAAAAQHaZfFoBPXKql6I4qWScVOfkeTblns7h0tBOaQAErUBMOCDSpUuXiIGRdJnOGVlTJl8NWsWItBfn6T9gFY9euQa35uV05o2VXurbzpxUaWAofFGM91iLR9M8a/BzVu0sZGkCPY7LbANN5QAd5QI95QNNUwcaygea5p6O/D+0+HElMicPl2kVmLRgwrhEeSCIr2NB69atxfd0mc4ZjViaBkXaYWofl165Bvu91TqUz3bZVg9d+4Ejoz5w8WhqC1kYsidZvqhX9Dgusw00lQN0lAv0lA80TR1oKB9oqn0dx79aT0c8UUvrdunTN5mTFhhOWlCbcZkxLhG0ArHhTgVLliyJ2LFAhumc0YilKZNvU75HKg+88t16OvulOn/nOaPrlYs+cFUhlm+Z9IGLR1N7yKFrxaGs+3GZbaCpHKCjXKCnfKBp6kBD+UBT7eu4YKOb5m/w0M8rXHTYY7XifkhPqEkLTKNPPjfGJYJWID4aGhqyYgRtZE3V0qxImVbsF/bDMje5DZKIFUuvXPSB80bxgdPSGIyUeQX0NS61AjSVA3SUC/SUDzRNHWgoH2iqbR1bFSlz07nrPLRwk4eWbtFXxhWXB7YpNlGnFibRSVClweDjEp5WQArpMoI2MkcNtNJeXTzUurh5SRZ3cWMvpMAudCB3yBUfuPalJhq/n41enq0Yq1m5TQsAAAAAAABZoLUvaLVwkxLR6Vimr/sgXjCef2txtjdDcyBoBTRhOgeac/NReRGfW7VdWVVoWWgSXyC3yBUfOO5Qedsxef6gldpNEAAAAAAAgEyjZlot2KjcC3FGEtA/uAUBMWHTt549exra/E1rmlb4gla92hjjRK23Maj6wLGHFZcEBvrAcVltJrIU49WUvdf/70g7udxNHU2APselFoCmcoCOcoGe8oGmqQMN5QNNta9jK99ivVo616FM//dCZoxLeFqB2HB7zdLSUkO32cyGpk63l2ocXmoI42m10he06mGQ0kA9jsFs+8DFo6nb46WddV46eZiNrjssj2zoHqj7cZltoKkcoKNcoKd8oGnqQEP5QFPt66hmWqnorTyQufC1ejr6yVpasU253zNhXCJoBWLDnQrmz59v6I4F2dD0srcbqM/tNfTmH0ppVrhMK6P4WelxDKo+cDOuKaSp5xeI7/w7P64VTXfVeWnP/9bSPg/WksdjEMd/g4/LbANN5QAd5QI95QNNUwcaygeaal9H9rRqUdD0e0cdlgdyh8S/13uoql6Ze7sxLhG0AvFh5IMkW5qqpVgOV/PnOOOlLJ/LA41zCOt1DHIp4JEDrVlpXBB7DDZNBBZs0ld3FlnodVxmE2gqB+goF+gpH2iaOtBQPtBU2zqet6+dFv2nmAZ3NFORnahjqf7uhfJtyvy7wdW0YOw2+LiEQwkAGj9h1YcpD3z4lHx66OQ88iL5BaSRQOP1I5+oo033l2RzcwAAAAAAgMHhMrlvriwir05vhKIlLhgVBK0AyNETFp+wDVzaDDKAPfPJXwAAAAAAAMRErx5P+eo9YJjEBaOiqXy6hx9+mEaPHk2dOnWiXr160dlnn03Lly/3P79mzRoqKysL+/XRRx/5Xxfu+ffffz/q/965cydNmDCBOnfuTF27dqXLLruMampqgl6zYMECOuqoo6hdu3Y0cOBAevTRR8kIcKeCfv36GbpjQTY0LVBTQ3HCwhjMkqZ6nQzIAuNSPtBUDtBRLtBTPtA0daChfKCp9nXkJlVnvFhHRzxRKxoG6RHVnkNNXDBjXGoraDVz5ky6+OKL6dtvv6WPP/6YnE4njR07lmpra8XzHFBatmxZ0NfNN99MxcXFdPjhhwe919NPPx30uuOOOy7q/+b/u2TJEvF/33nnHZo1axZdddVV/uerqqrEtnTp0oV+/PFHuuuuu+j++++nl19+mYyA3W7P9iYYTlM106ohxIf9o7+dNOqhGrrvKwcZCYxB+UDT1IGG8oGmcoCOcoGe8oGmqQMN5QNNta0jZyH9tNxN8zd46Nr3G0iP5NmaV9vYDT4uNRW0+vDDD+mcc86hAQMG0JAhQ+iZZ56hdevW0d9//y2et1gs1L59+6Cvzz77jE466SQRuAqEs6sCX5efH7mN/NKlS0Wg7PHHH6cRI0bQfvvtR//73//ogw8+oE2bNonXvPvuu9TY2EhPPfWU2L5TTz2VJk2aJH7XOx6PR3Qs4O8gc5rm+09YwasIy7Z6qGK7V3R2MwoYg/KBpqkDDeUDTeUAHeUCPeUDTVMHGsoHmmpbxx21HjrzxXr/7+/+5aJTn6sTj+uJsnwTtSxs+t2DcaltT6vKykrxvWXLlmGfnzt3rvgAuawwlOuvv56uuOIK6t69O1144YV07rnnRix1+f3330WQa/jw4f7HuEyRU/D+/PNPOv744+mPP/6gUaNGBUU5Dz30UFEiuGvXrrDb6HA4xJdKdXW13/1f7QDA28T/hwdhoJmc+nhop4BIj/Nj/Fy4x5nQQR7pcQ4M8nYEPq6+Z7gDhV8fadu1vE+Rtj2T+8Tvoz4fbtt7tyE6foiVhnWyBL3Pym3Kzz1bN9cm2/sU+njoPqX6OQX+D73sU6zH07VP6hhUvyLt07BOZvpng0d0aOG/0fI+ZfpzCjyO9bJP2f6cAsdluPNbLu5TtMfTtU+qjurPetinaNue7n1iIo3JXN2nbH9OgedPvexT6DZibqTfuVEu7VOsbU/HPqk68u/R9jXRfZr4ej39tjp4e35d7aZJb9TTOxfl6+ZzeurMfP82Bp4vvTk4N5LV9VCzQSsW7aabbqKRI0cK/6hwvPbaa6K+c9999w16/JZbbqGDDjqICgoK6Pvvv6frrrtOlBhecsklYd9ny5Yt1LZt26DHrFarCETxc+prunXrFvQa9rZitm7dGjZo9cgjj4gSwlAWLlzozwxr1aqV8NBav3698NVSKS8vF1+rV6/2B7sYLk9s3bq18PpqaGhKiezZsyeVlpbSokWLggYH68OBNg7uBcKZbJw5xllmgYOYH+f/V1FR4X9cDdTt3r2bNmzY4H+8pKREeI/x/m/evNn/eC7sE2fe9e/fXwQcOZsv0/u0ePFi8T48FvjgDrdP5UT0zJnKPs2fv8j/+KL1nTlxlDoUOWj+/MWa2ad0fk489gL10sM+Zftz4osSvx8H1nmbIu3TGX3W0z8bOlLbAgctWrRa0/uU6c+JM3HVccnbp4d9yvbnpE6WeFwGelrm8j5l43NiHevrldVovexTNj8nnoeyZYV6DdLDPmX7c+LxqZ4/+b31sE+YGxlnbpRL+5SNz0nVcePGjeL+WcY+baovolmrmi8ouD1EMys89PkvS6hbmVOXn5M3h+dGoR7hyWKqrKzUZI3RNddcI0r2pk+fLozZQ+GLHX+oN9xwg8ioisa9995Lb7zxhhAwHA899BC99dZbNGfOnKDH+UPlwBkbtHMJIh90jz32mP959sDigBlnavG2xJNpxRMfHgz8geZKVJ3fk7UbNGhQMwM4va8UpGuf+ETKkwzWlP9fvPvE/7vvnfVU7yT6+dpC6tGaNBlVD7ftqXxOfLPAjRBUvfSwT9n+nPg7j0G+2Kn/N9w+rdzmonfnuKh1sYkm7G/T9D5l+nNyuVz+45gXOvSwT9n+nALHZWh2dK7uU7YyrVjHoUOHBv19Lu9TtjOt5s2bF3QNyvV9yvbnpI5R1tRms+lin0K3EXMj/c6NcmmfspVpxToOHjxYHN8y9unrxW4a92pTaWAoL51rpyMGWHX5OblzeG7EvuAcFOPgmRr/0E3Qikv7pk2bJr64vC8cb7/9Nl1++eUicNSmTZuo7/fVV1/R6aefLqKKeXl5YTO2ODtr7dq1/sf4ZoQzqV555RVRHsj+VRx0evPNN/2v+emnn8RzHH2MVMIYCH9oHJnkssdUPrRMox4I6kAEmdPU4/GS09PURWJTpYeG31dLFjPRqruLyWYxxueBMZg9TblLC3ewLM4zUb6voyVQwLiUDzSVA3SUC/SUDzRNHWgoH2iqXR2XbnHT6Ml1EZ+fcU0h9WvftKiQy7z+eyN9/LeLjh9qpQtG2nN6XHL8g22YUg1aacqInT8QDlh9/vnnwmA9UsBKDTQdffTRMQNW6upYixYtwgasmH322UcEktgjS4U7BPLgYGN2Zu+99xbdDXlVQ+WHH36gPn36xBWwynU4MwhkVtPvlrio0801dNKUphN0xXYlit61pckwASsVjMHsaHra83U05J5a+nmFnJp0vYFxKR9oKgfoKBfoKR9omjrQUD7QVJs6ckBqVE+LWLgPhH8f1cuim4AVs3anl2ZWuGnFtqbsqUaDj0tNBa3Ye4q79L3wwgvC84l9pPhL9WVQWblypQggXXDBBc3e48svvxTZUVzOxq/j92JvKc6UUuEyQA5GcZ0tw6V9hx12GF155ZXiuV9//VWUHZ5yyinUoUMH8ZrTTjtN1Jdydhf7EXFnwSlTptBll11GeoeDd1wTHC5dHqRPU7vPca6hKU5KHi/RsM5mGtpJPyfmeMAYzJ6marvd9buhfSgYl/KBpnKAjnKBnvKBpqkDDeUDTbWt47Pn5NPIHsH3QPz7s2c3mbDrgXxr8Bzcg3GpLSP2F198UXw/9thjgx5/+umn6ZxzzvH//vrrrwufqzFjxjR7D66bff755+nmm28WmVtsCMaeVuPGjfO/pq6uThiHBWZN8d9woOqEE04QqXf8/YEHHvA/z2ltH330kcgEO/jgg4X52I033kjjx4+XrgMATJ4atHI1VfAe2NtK0y/X1GELdM7izcoF8uZPHDR+v6buqQAAAAAAAGSK1kVmev/iQlEquHqHl7q3Nukqw0olz6Z8dzg15+KUNTR198slevFw++23i69wcMYUf0XjwAMPbPa/2CBMDZpFgs3k2BgegEyg+gc5AjKtAAAAAAAAAMCocKCqX3vSLaqXsZppBTRWHgi0S2C3HJAZTfNtzTOt2JjdqGAMygeapg40lA80lQN0lAv0lA80TR1oKB9oKgfoKKPapukxi8H11GT3QL2Sq90DQXZYu9ND+z5YSwU2ooq7S8jl9lK/O2uoUwszfTypkFoVGcuIHWSHDv9X7f950/0lWd0WAAAAAAAA9My7c5x01XsNNLqvhd66sJByGV12DwTahL3BeMDxd5A5TZsyrZTXr9vlpbpGonU7PdSigAwFxqA2NGUPAdAExqV8oKkcoKNcoKd8oGnqQEP5QFM5QMfU4HtAu4XI7MtP8EJPBK1AbLhTQUVFhaE7FmRD00K7icb0s9DRA63k9hBVbFde26ONmczqWcwgYAxmR9MdtR5/ijIzenIdnfpcnXgcYFymA2gqB+goF+gpH2iaOtBQPtBUDtAxNU4YaqM195bQG+OVLCsP9NSWETsAoIniPJP/ZMWoQauebRBrBplh0hsN1BiSXPXrajdNerNBdG8BAAAAAAAAgHSCu18AcgQErUAm4VLAmRVuCs1E5qy/mSvdKBUEAAAAAAAApB3c/YK4yM/Pz/YmGFZTrl/mLzVo1cugQSuMwcxqunpH9Lr5WM8bBYxL+UBTOUBHuUBP+UDT1IGG8oGmcoCOybNqu4fGvVJPV7xT738s3+B6ontgBkH3QJAoe91XQ5urvPTDNYV09kv1tGG3lz69tJD27mbstqcg/XAmFXtYRWLGNYXUrz3GIQAAAAAAALJYtMlNhz5WR+1KTPTPLcWUy6B7IMgYbPq2Y8cOQ5u/ZUtTLs3yeInqG4lGdLXQoA5m6tHaWCbsDMZg5jXlgNSonhayhFwl+PdRvSwIWGFcpgVoKgfoKBfoKR9omjrQUD7QVA7QMTXyrMq9XoNTyS3yQE8ErUBsuDSNo6NGbrOZLU3zbMp3NsOecnYBfXtVEbUpNt5hizGYHU2fPSefRvYIDk7x78+ebewUZRWMS/lAUzlAR7lAT/lA09SBhvKBpnKAjqmh3v85XMp3L/RE90AAtEy+iLR7/ZF2ADJJ6yKz6BLIpYLsYdW9tQkZVgAAAAAAAKSJfGtT0MrIgapAELQCIAci7TtrveTxeMlsNl5pIMg+HKjq1z7bWwEAAAAAAIAxygPVwJXNeEU2zYAEIC5KSkqyvQmG1FTJtCK6/sMG6vWfGpo6u5GMCsagfKBp6kBD+UBTOUBHuUBP+UDT1IGG8oGmcoCOyZMXkFaklgiWGFxPdA/MIOgeCBLljBfr6Kflbv/vz5yVTycN86VfAQAAAAAAAADQDVwS2OnmGuLUhbk3F1G7ktzNM0L3QJAxuFPB5s2bDd2xIFuaDutkoYP6NHkI9WxjzEMWY1A+0DR1oKF8oKkcoKNcoKd8oGnqQEP5QFM5QMfUMJlMtOaeYlr/32IRsPJATwStQHzRXj5QYASXeU1vPiqPnj2rgIwetMIYlA80TR1oKB9oKgfoKBfoKR9omjrQUD7QVA7QMXVsFpMIXjFe6ImgFQBaZ9UOJarevsRExXkwYgcAAAAAAAAAYAwQtAJA41Rs9xg6ywoAAAAAAAAAjMJ/PmugC1+rp2Vbm7yNjQzugkFMODWxVatW/hRFkDlNH/zaQZe/0yB+7tnWuIcrxqB8oGnqQEP5QFM5QEe5QE/5QNPUgYbygaZygI6p8+NyN3250EXbq73Qk4gCGioCEB6z2Uxdu3bN9mYYUlNXgN/ePt2aDNmNBsagfKBp6kBD+UBTOUBHuUBP+UDT1IGG8oGmcoCOqZPnaxbf4IKejHFTN0DccKeCtWvXGrpjQbY0zfedsA7uY6FhnY17uGIMygeapg40lA80lQN0lAv0lA80TR1oKB9oKgfomDr5vtQih8sLPRG0AvHAnQp27txp6I4F2dB0R62H3p3j9KeIjp5cR6c+VyceNxoYg/KBpqkDDeUDTeUAHeUCPeUDTVMHGsoHmsoBOqZOnlUpBXS4oCeDoBUAGmXSGw20dlfwyf7X1W6a9KbicQUAAAAAAAAAQF/kqZlWSv6C4UHQCgANsnSLm2ZWuCl0gcLtIZq50i2eBwAAAAAAAACgz0yrBhey1RgErUBMuFNBeXm5oTsWZFrT1Tuin6BiPa83MAblA01TBxrKB5rKATrKBXrKB5qmDjSUDzSVA3SUZ8T+z3o3Ld/qNbyepsrKSmPd/WaRqqoq6tKlC1VWVlJpaWm2NwdoGM6kYg+rSMy4ppD6tTduN0EAAAAAAAAA0BvsXzzh9Xr6dVWTj/GonhZ69px8al1kzrn4R1lZGa1bty6l+Edu7TXICm63m1auXCm+g8xoygEpPjlZQo5Q/n1UL4vhAlYYg/KBpqkDDeUDTeUAHeUCPeUDTVMHGsoHmsoBOqbua/zHmuDGW7NXuWjSG/VkVBC0AnFRXV2d7U0wnKYcTR/ZIzg4xb8/e3Y+GRGMQflA09SBhvKBpnKAjnKBnvKBpqkDDeUDTeUAHVPzNWYf40A8XhPNrPAY1tfY50sPANAanP75/sWF4uTEHlbdW5sMl2EFAAAAAAAAAEYgHl/jfu3JcCBoBYDG4UCVEU9OAAAAAAAAAGAUOEkhlef1CsoDQUy4UwEbyBu5Y4FsoGliQC/5QNPUgYbygaZygI5ygZ7ygaapAw3lA03lAB2TJ6KvsclLo3qaDVt1g+6BGQTdAwEAAAAAAAAAABCpe+CkNxto5som/6pRvRRfY3QPBCAC3PlhyZIl6AAhEWiaGNBLPtA0daChfKCpHKCjXKCnfKBp6kBD+UBTOUBHOb7GM64ppKnnF9D3V+XTPQeupRb5xs01gqcViIuGhoZsb4LugKaJAb3kA01TBxrKB5rKATrKBXrKB5qmDjSUDzSVA3SU52vsdrtp/hZj64lMKwAAAAAAAAAAAACgORC0AgAAAAAAAAAAAACaA0ErEBOz2Uw9e/YU34EcoGliQC/5QNPUgYbygaZygI5ygZ7ygaapAw3lA03lAB3lYoae6B6YSdA9EAAAAAAAAAAAAHqnCt0DQaYQ5m/z56MDhESgaWJAL/lA09SBhvKBpnKAjnKBnvKBpqkDDeUDTeUAHeXihp4IWoH4MPJBki6gaWJAL/lA09SBhvKBpnKAjnKBnvKBpqkDDeUDTeUAHeXiNrieCFoBAAAAAAAAAAAAAM2BoBUAAAAAAAAAAAAA0BwwYs8guWrE7vV6qaGhgfLz88lkMmV7c3QBNE0M6CUfaJo60FA+0FQO0FEu0FM+0DR1oKF8oKkcoKNcvDmsJ4zYQUax2+3Z3gTdAU0TA3rJB5qmDjSUDzSVA3SUC/SUDzRNHWgoH2gqB+goF7vB9UTQCsTE4/GIjgX8HcgBmiYG9JIPNE0daCgfaCoH6CgX6CkfaJo60FA+0FQO0FEuHuiJoBUAAAAAAAAAAAAA0B4IWgEAAAAAAAAAAAAAzYGgFQAAAAAAAAAAAADQHOgemEFyuXsg19Cazeac61igVaBpYkAv+UDT1IGG8oGmcoCOcoGe8oGmqQMN5QNN5QAd5eLNYT3RPRBklMbGxmxvgu6ApokBveQDTVMHGsoHmsoBOsoFesoHmqYONJQPNJUDdJRLo8H1RNAKxIQju0uXLjV0xwLZQNPEgF7ygaapAw3lA03lAB3lAj3lA01TBxrKB5rKATrKxQM9EbQCAAAAAAAAAAAAANoDQSsAAAAAAAAAAAAAoDkQtAJxYbFYsr0JugOaJgb0kg80TR1oKB9oKgfoKBfoKR9omjrQUD7QVA7QUS4Wg+uJ7oEZJFe7BwIAAAAAAAAAAADEC7oHgoy22eQBx9+BHKBpYkAv+UDT1IGG8oGmcoCOcoGe8oGmqQMN5QNN5QAd5eKFnghagdhwp4KKigpDdyyQDTRNDOglH2iaOtBQPtBUDtBRLtBTPtA0daChfKCpHKCjXDzQE0ErAAAAAAAAAAAAAKA9ELQCAAAAAAAAAAAAAJoDQSsQF/n5+dneBN0BTRMDeskHmqYONJQPNJUDdJQL9JQPNE0daCgfaCoH6CiXfIPrie6BGQTdAwEAAAAAAAAAAKB3qtA9EGQKNn3bsWOHoc3fZANNEwN6yQeapg40lA80lQN0lAv0lA80TR1oKB9oKgfoKBcP9ETQCsSG22tydNTIbTZlA00TA3rJB5qmDjSUDzSVA3SUC/SUDzRNHWgoH2gqB+goFy/0RNAKAAAAAAAAAAAAAGgPBK0AAAAAAAAAAAAAgOZA0ArERUlJSbY3QXdA08SAXvKBpqkDDeUDTeUAHeUCPeUDTVMHGsoHmsoBOsqlxOB6ontgBkH3QAAAAAAAAAAAAOidKnQPBJmCOxVs3rzZ0B0LZANNEwN6yQeapg40lA80lQN0lAv0lA80TR1oKB9oKgfoKBcP9ETQCsSGOxXwgWLkjgWygaaJAb3kA01TBxrKB5rKATrKBXrKB5qmDjSUDzSVA3SUixd6ImgFAAAAAAAAAAAAALQHglYAAAAAAAAAAAAAQHMgaAViYjKZqFWrVuI7kAM0TQzoJR9omjrQUD7QVA7QUS7QUz7QNHWgoXygqRygo1xM0FNbQauHH36YRo8eTZ06daJevXrR2WefTcuXL/c/v2bNGuE+H+7ro48+8r+O3elPO+00Ki8vF+9z6623ksvlivq/d+7cSRMmTKDOnTtT165d6bLLLqOampqg1yxYsICOOuooateuHQ0cOJAeffRRMgJms1lowt+BHKBpYkAv+UDT1IGG8oGmcoCOcoGe8oGmqQMN5QNN5QAd5WKGntoKWs2cOZMuvvhi+vbbb+njjz8mp9NJY8eOpdraWvE8B5SWLVsW9HXzzTdTcXExHX744eI1brebTj/9dGpsbKSvv/6apkyZQm+++Sbde++9Uf83/98lS5aI//vOO+/QrFmz6Kqrrgpq18jb0qVLF/rxxx/prrvuovvvv59efvll0jvcqWDt2rWG7lggG2iaGNBLPtA0daChfKCpHKCjXKCnfKBp6kBD+UBTOUBHuXigJ5kqKys1a0O/fft2kSk1bdo0GjVqVNjXHHDAATRs2DB66qmnxO/ffPONCFotXbpUZEQxL774It1xxx20cuVKstvtzd6DX7vPPvvQDz/8QMOHDxePceDs1FNPpcWLF1OHDh3ohRdeoLvvvltkfqnvcfvtt9MXX3xBf/75Z1z7w4EvDnpVVlZSaWkp5QoPPfQQrVixgnr37k3XX399tjdHF0DTxIBe8oGmqQMN5QNN5QAd5QI95QNNUwcaygeaygE6yuWhHNaT4x9cFceVcKnEPzQdtOIgEweRZs+eLcrxQpk7d64oJ+SMqn333Vc8xhlVX375Jf3yyy/+161evVoEtn766SfxPZTXXnuNbrnlFhHBVOFyQg56vfLKK3T88cfTpEmTqLq6WmRtqfD78XP8/i1bttRt0Ioz3DZs2CDKNtevX5/tzdEF0DQxoJd8oGnqQEP5QFM5QEe5QE/5QNPUgYbygaZygI5y6ZzDesoKWllJo3D620033UQjR44MG7BSg039+vXzB6yYLVu2UNu2bYNep2Zcbd26Nez7hPsbq9UqAlH8nPqabt26RXzfcEErh8MhvgI/NGbXrl2ijJFhQzWuT+X99Xqb4ofq4+rrYj3Oj/Fz4R5nQtMJIz1usVjEdgQ+Hlg/y9se+vpI267lfYq07ZnaJ/7OY4y/s6Z62Kd0fk5MoF562Kdsf07qGOT35EC6HvYp1rbL3qfA43j37t262Kdsf07qY/z/wl1vcnGfoj2ern1St48fC9UxV/cp2rane5/U3wOvQbm+T9n+nALPn3wN0sM+hW4j5ka59zlhbiRnn1Qd1ftfPexT6DZibmSOa5/U+EfodugmaHXdddeJ0rzp06eHfb6+vp7ef/99uuGGG0irPPLII8L3KpTu3btTLsIRXu5cAOTBUWdoGj/QSz4bN26kFi1aZHszcn5cxpNtCxIblzjWU2fTpk3QUSK4BqVHU1yDUgPjUj6YG8m7d+QsGyCHjTk8N+IGd6mMBU0GrbhW86uvvhJeVpwGF45PPvmE6urq6Kyzzgp6vH379vTXX38FPaZmWKmZUaHw32zbti3oMS4P5EgmPxfpNbHe99prrxVdCFXUFc9ca1m599570+bNm0U3xj/++CPbm6MLoGliQC/5QNPUgYbygaZygI5ygZ7ygaapAw3lA03lAB3lsncO68kZVhywYo/wVLBqbac4c+rzzz8XBufRMpK4NPDoo4+mNm3aBD3OhupsVsYBJrXkjw3WuYayf//+Yd+L/4ZTQNkja8899xSPcYdADjKNGDHCP1jYiJ07GtpsNv/79unTJ+IKe15envgKJBej9mpKIn/PJS8uLQNNEwN6yQeapg40lA80lQN0lAv0lA80TR1oKB9oKgfoKBdzjuspI9vOqrWSQC75Y7Pz4uJiv58UfzgFBQVBBu0zZ84Urw1lzJgxIjg1ceJEuuuuu8R73HPPPTRhwgR/AGnOnDnCWP3TTz+ljh07Cl+sww47jK688kp69NFHRWCKg2ennHKKPyp42mmn0QMPPECXX345XX311bRo0SKaMmUK/fe//yW9w9libEJfUlKS7U3RDdA0MaCXfKBp6kBD+UBTOUBHuUBP+UDT1IGG8oGmcoCOcrkMemqre2CkKNzTTz9N55xzjv/3O++8k959912aP3++P/IYCHcB5NI87iBYWFgoSgj5b1RDuJ9//pmOO+44mjdvnt9cfefOnSJQxR5a/J4nnHCCCFJx8ExlwYIFonSRyw9bt24tAmPXXHNNGpQAAAAAAAAAAAAAMDaaCloBAAAAAAAAAAAAAMA0T1MCAAAAAAAAAAAAACDLIGgFgIbKY7kJAQAAAJAOcJ0BAAAAQK6BoBWgSy+9lM4+++xsb4ZutOSbgtAvbh4AwmvFjQ3CNWXg5/g1IDl+//130dmUm0iA+MCYTC+41sgHmqYOzpXy2L59u/B6HTRokOjgzR22x44dS7/++mu2Ny0nWb9+vTBg5oZR3C198ODB9O9//1v48MYDe/jydWv37t1kZNRr+yOPPBL0OAfwZXQ1M+I9Dns79+7dm0488UR67bXXyOPxZHvzchpcy2ODoBUAkuFOlMuWLQv66t69e7Y3S5N07tyZPvzwQ6qvr/c/1tDQQO+99x516dIlpffmLqBG5tVXXxVdUmfNmkWbNm1K6b3cbrdhJiTpHJMAAH2fK43OeeedJ5ocPfPMM6JT99tvv00HHHBA3EEW0MSqVato9OjRYtHzxRdfpLlz59LkyZPpxx9/FPNMaJoY+fn5okP8rl27sr0purjH4WZo77//Ph144IH0f//3f3T66aeTy+XK9uYBHYOgFQji22+/pSOPPJK6du0qAi18EqqoqPA/v2bNGhFh//TTT0UHxvLycho1apRYqQQKeXl51L59+6Avi8VCX3zxhTi5t2vXjoYOHUr3339/sxP85s2b6ZRTThF/w6/5+OOPSc8MGzaMOnXqRJ999pn/Mf6ZgwO8/4mOyw8++ICOOeYYoTF3GDUqNTU19NFHH9FFF11ERxxxBL3xxhvNVl6/+uor2n///YVWhx56KC1atMj/Gn49az1t2jTaZ599xIr5unXryAjIGpN8fuRus6FZCLxaPmPGDDI6Q4YMEZ2BA+Gb2/vuu8//O4/TV155RXQP5mvNnnvuKcYkSF5TEP+5Uj0PxsrM+N///ke9evUS543LL7+cbr/9dqG70eBsHg78cbfugw46SGi31157iSxVvi6rr2GNevbsKRYI+DzJN78qPFZZu5deeokGDhwojvsLLriAKisryWjw9cNut4vxyZrwNejwww+nTz75RARX7777bvE6h8NB//nPf4RefK3eY489RCCW50WsL8Od0o2eKcwBQJ5bh2ZbBcLa7rvvvkJHPp8+8cQT/ud4XI8ZM6bZ3/A9EHebN9o9TseOHcVY43H65ptv0jfffOM/f8Y6zpkvv/xSfCY8B+3Ro4e4zgMF3IuHB0ErEERtba1IRf7hhx/EwWA2m+ncc89tlmXBF8srrriCfvnlFzFZ4wkfIuyR4YncJZdcIiYMv/32m1jt4ZP7Qw89FPS6e++9l0444QSaOXOmOEldeOGFtHTpUtIzPL5ef/11/++cZhx68Yp3XN5xxx1CZz5xcyDGqPAkl8sy+OuMM84Q+nq9wY1ib7vtNrrnnnuEphxI4dcFZqfV1dWJccqTNh6zPIkzCjLGJN9ocXYW31CovPPOO9ShQwc6+OCDM7g3uQ3fDHB5EZ8TOahw8cUXI8MAZPRcGQ1eHOHrON/QcgYMBxY44GJEiouLxRcv0AWe9wLh8yIH7zlDg/XiRQKe8wQe03xzxp8LZ2nxQhRnbnHgy0iwHt99952YWxcUFAQ9xwEDLmXljGAeq5wlyDrxuZLnPnzdLioqEsECvnYxnPXG2TG8WGpUePGYg3vPPfccbdiwodnznMk2btw4sXA8e/ZskT3Ec3I1EMNzctYxMHiwePFiWrBgAZ166qlkZHhOw0E+dbEv1nHOi6Y8p+JrOi+k8hxq+PDhWd4L7YB78fAgaAWC4NpkPrHw4OesgqeeeooWLlxIS5YsCXodHyQcBeZ65ptvvpnWrl0bdCI3MtOnTxcrEOrX+eefLyYK7JPD9cq8osCrNbfeeiu9/PLLQX970kkniZM968rPc2bBs88+S3qGbxTY74LHEH9xgIQfS2Zc/utf/xKv45UJXnkwKjxRVTXkVO6qqipxUQuEfTF4HLL3CJdybNu2LSi7iANYDz/8sFh15Bu6wsLCjO9HLo/J448/XnznGzgVXo3kiZrJZMrwHuUufM7kGwLWmW84ODPmr7/+yvZmAQOdK6PB12cuieMbCr5u83mVM16MiNVqFZl+fJ7jDAG+IeVgHt/UMxwI4GOXsyf5BpWPaQ4KcMYAZ7gElmOzrnxe5ewBzmTjoMyWLVvIKPB8mgNS7GUVDn6cs1lYTw7wPfnkk+Kaw/NLzl7hwAsHadirjeGFKQ52Gd2/iTXi4Mp///vfZs/xNZyDLzfeeKM4lvlazYskjz/+uHh+wIAB4m85EBMYtB4xYoQYy0aH54k8X4rnOOdAP49Rvn/kscy6Gi0wHQ3ci4cHQSsQBNfOc3YPHyS8SsMnEtUMMhC+0VXhCyHDN72ARAkgrxyoXw8++KCYtPH3wGDWlVdeKcoBOaNFhUuxAuHfeXVMz/Bkiie3PNHlFS3+mQ0ekxmXHOQzOsuXLxergerKH99InHzyyf4V13BjrVWrVuKiFzjWuCyBTV+NiIwxyf4ZZ555pj9j6++//xYlmDDaTIzAaw1nD5SWluJaAzJ6roz1HlwCF0jo70a72eLs8LfeeksEATkAyKWCfB7leRAHnTmwEjgX4lIX9m9S4fMpP66y9957iwwD1tpoxMr6Y+04OGXEctRk4UAqj8/QKgb+feTIkUGP8e98rWdfT4Yz3DiDWv1sOIDFGVhA0YMX5OI5zrlUEBnnkcG9eHisER4HBoVXHDm9nVcWuIyFJwp80m5sbAx6nc1m8/+sZg0Yxag5FnxjFbrqwqmeN910kz/7IhC+uTU6vFKt+v9wdk+y49JI2UCRYC8LTg8OXKHlyQT7EPCKdbxwSYKRM4JkjEnOsuSbCS5F4Js21ecFKNeN0BuycM0TAq816t/hWpOapiC+cyWXZEDPxOE5DWfx8hdnrbC3DXtVcekKZ0CzL1goLVq0yMq2ahX2AuLjmQMp4eaN/DhrFlo6CGLD2XtsH8HBq0QXkTjAzZ51vAjFGYF8bedANyCx6MneaRywinWc474nOrgXDw+CVsAP1xrzShYfJGzQzHCaJ0gdrudmbWOlEP/xxx901llnBf0eaP6sV3hFlm8G+KQb6kWFcRk/fAPGPiCcih1qGMqTM14V7Nu3r39sqd3wuJsOr+yozwE5Y5JXwTj7j9PkeXU21MPOyHA2G2eaqnBZFq/EguSBpnLPlRxgrq6uFotOvBjFhJoJc0kMl8IEXrdRvhpM//79RZk0z4O4xI8z2vjmNhKcTcBG43yzpl6rOIDIWhsFzn4+5JBDRNdA9rYJDE6xhnw94UxeLkXlm1TOaOPXh8IZ03q/kU0G9j/lBSXOMFfh4DXbAgTCv/NrOJuN4WYL/HesP3cYZs2N5PcZCfat4vI1tujgrKpYxzln8fPfcFk1CAb3PJFB0AoERcD5Qjl16lSRZsgTBz6xg9Th1UY1cs7p8zwB48kvmziyIbYKdwvkm9z99ttP1Mpz6QJ7FegdnhCoXS/UyYEKxmVifmrsc8FZQqHeFVwfz2UvaschLldlXblzCz/G5W9qpyEgb0xyttUNN9wgsgChbxOcdcbll0cffbQYq+wxEqozSAxoKvdcyUbXfNzeddddwuyar8esbyD8OJf683Wb/f/4b/jmLVpQRs83W3y+Y005YM+m7Gxu/dhjj4nugXyDz2Xp7BXEWS4cDOAgK5sy87lRNWLmLAxuqMKNQjhoyD5h3IxBLX8xCrzIwd0COZOHPU55TLGnDc8ZOaDH3/k6xEFWzmZjI3YOBnCnXy4R4r/jOScvvPB45zJ31pY/F6PD45PL+gI9Y1lDHqM8N2Lt+Pr//PPPN8u05hJBzhzkrBcjdmblJgsclOKSya1bt4pOd5MnT6ajjjpKBO/5/ibWcc7HNJ9nuYSQva14EeHrr7+ma665howO7nkiA08rIFZgeGLLJxruesNprxw0YVM39QYXpJ61wZ3Dvv/+e3FR5N/ZsFTNdFHhEkI2HOXoOtfc8yobr1IaAfaq4a9QMC7jh2+02IQ1nNkqB0v5BoJvqBi+CHJ3HPYV4AkIZx2oq7JA3pjkcgJeceTvRk+JV681zLXXXivKNDiYzzcPxx57rJjAgsSApuk7V27cuFF0GuObKb4mc/YVnzMDYZ1Zdw4qcNBw9erVIohgxGOds9HYlJpNgzlIxedGzmTj5jIcgOHgCWeosJacPcTeX+zbwkEWXjwJLI3jkjgODnCwigMM4Uq09Q5n5s+YMUM0luGudnvssQddddVVwjeVAwV8Y8s88sgjYsyykTX7f3EQVfVK5awXvj7x9Z6DB7yAAhRYl8AMNNaXAwU8B+dSLA7682tCOwez1hyg5UwrPscaDR57nJXPPksccGLvXg6Y8j0LX4viOc55DHMG+rRp00TmGh/vvChgZHAvHhtTZWVl/L19gS7hFQWeJKB0BQD9wxMMXu3isiH4iKQf1pknw9y6mL8bGVxr5ANNtQff1PIKOQe8QGJw5gqXEibSwREAAHIdXMtjg/JAA8M+NtzKnScHHAUHAAAgB/bD4tVYLnHh1W8jB6xwrZEPNNUGnNHCq+Lse8er5JyNxdkxXOoPAAAARAPX8vhB0MrAcP02G4bydyOmuAIAQLpgA1fOaOOSDO5SZmRwrZEPNNUGXArD5YO8Os5eL3y8c+lhOFNsAAAAIBBcy+MH5YEAAAAAAAAAAAAAQHPAiB0AAAAAAAAAAAAAaA4ErQAAAAAAAAAAAACA5kDQCgAAAAAAAAAAAABoDgStAAAAAAAAAAAAAIDmQNAKAAAAAAAAAAAAAGgOBK0AAAAAAAAAAAAAgOZA0AoAAAAAIEO88cYbVFZWJr5mz57d7Hmv10sDBw4Uz59++umUbf6/vTuB222q//+/RaZmGRNlihCJEJnHZMjsK5QhknmMJCHzFJKZSL4y8yVjGVLGklnJlCFk6JAhQ/0fz/V7rPu/zj77uq59T+e+D5/X43E9zn2uYe817/V5r89nrQcffLA66KCDqscff3ykkxIEQRAEwXuQEK2CIAiCIAjGM5NPPnl13nnnjfP+TTfdVD311FPVZJNNVo0GiFYHH3xw9be//W2kkxIEQRAEwXuQEK2CIAiCIAjGMyussEJ18cUXV2+//fZY7xOyPv/5z1fTTTfdiKUtCIIgCIJgtBCiVRAEQRAEwXhmnXXWqV588cXquuuu63vvzTffrC655JJq3XXXHef7r776arXXXnul0MFpppmmWnDBBatjjjkmhROWCCvcddddq8suu6xadNFF03cXWWSR6tprrx3rezyndt5553QdAtmnP/3papNNNhkrDFAo4ze+8Y3096qrrtoX1vjb3/627zvXXHNNtfLKK1czzDBDNeOMM6a0P/DAA0NaVkEQBEEQvHcJ0SoIgiAIgmA8M/PMM1cLL7xwdf75548lAL388svV2muvPdZ3CVMbbLBBddxxx1XLLbdcdeCBB1ZzzDFHtffee1ff+973xrn2LbfcUu2yyy7pOvvtt1/1xhtvVBtvvHESyTJ//OMfq9tuuy1955BDDqk222yz6oYbbkji1GuvvZa+s9hii1Xf/va309+ud9JJJ6XXnHPOmd4755xzkkj1gQ98oNp3332r3XbbLYUTrrTSSrEHVhAEQRAEQ8JEY8aMGXuJLgiCIAiCIBgWeC995zvfSR5Wf/jDH5LY89BDD1VTTDFF8mp64YUXkpfU5z73ueqzn/1sde6551aXX355teGGG1bf//73kzCU4Rl16aWXJgFq1llnTe/xhJp00kmrW2+9te+9e++9t1p88cWrww47rNpyyy3Te6+//nq6Z8ntt99eLb/88tWJJ56YRDIIYZQuaVpiiSX6vvuvf/0reX197WtfSx5fmeeee65aaKGFxnk/CIIgCIJgIISnVRAEQRAEwQiw5pprJvHoyiuvrF555ZXqqquuagwNvPrqq6uJJ564z+sps9122yUvrHro39JLL90nWGHeeeetPvzhD1ePPfZY33ulYPXWW28lLyy/IXrdddddPdNOdBszZkwKcyS05Zd0CjksQwiDIAiCIAgGyiQD/mUQBEEQBEEwYKaeeuokMAkRJF6988471RprrDHO95544om0Z9SHPvShsd7/zGc+k/6tn+z3yU9+cpxrfPSjH63++c9/9v3f/Y488sjk+fX000+PtTeWEMVePPzww+nf1VZbrfFzIlkQBEEQBMFgCdEqCIIgCIJghOBZtf3221fPPvtsOlGQuDRYeDs1UQpTwgxzqOIXv/jFJDJNNNFEaW+r//znPz3vkb9jj6tpp512nM8nmSSmmEEQBEEQDJ6YUQRBEARBEIwQNj7fcccd035Sp59+euN3Zppppur6669PIYSlt5W9sPKm7v3FXlj2yTrggAP63rNhu5C/EkJWE7PMMkuft9gyyyzT7/sHQRAEQRC0Ifa0CoIgCIIgGCE++MEPpjC9Pffcs/rKV77S+J0VV1wxhQ7yaipxmiBRyebp/eV973vfWJ5XsAG7+5Q4GRB1McsphryzpN2eWHWef/75fqcpCIIgCIKgTnhaBUEQBEEQjCA8nrpBzHJy3/7775/2r7Kxuo3QnSoovK/cdL0tK6+8cnXOOeck4WnOOedMnl68uaaaaqqxvucUQ+GGP/7xj9NeV04mXGqppappppkmCVZOI1xyySWrtdZaK3ldPfnkk2lD+UUXXbQ6/PDD+52uIAiCIAiCkhCtgiAIgiAIRjG8oghMBx54YHXhhRemvaiEBBKxnCA4EA4++OAkRp177rnVv//972qRRRapLrnkkiQ+lUw33XTVUUcdlQSqbbfdNnliXXbZZUm0sh/X9NNPnz4/9thj03VsGL/YYotVX//614co90EQBEEQvJeZaMyYMWP7hgdBEARBEARBEARBEATBCBN7WgVBEARBEARBEARBEASjjhCtgiAIgiAIgiAIgiAIglFHiFZBEARBEARBEARBEATBqCNEqyAIgiAIgiAIgiAIgmDUEaJVEARBEARBEARBEARBMOoI0SoIgiAIgiAIgiAIgiAYdYRoFQRBEARBEARBEARBEIw6QrQKgiAIgiAIgiAIgiAIRh0hWgVBEARBEARBEARBEASjjhCtgiAIgiAIgiAIgiAIglFHiFZBEARBEARBEARBEATBqCNEqyAIgiAIgiAIgiAIgmDUEaJVEARBEARBEARBEARBMOqYZKQTEARBEATvJiaaaKL0CoIgCIIgCIKgf/z3v/9Nr0yIVkEQBEEwRBCrPvjBD4ZoFQRBEARBEAQDgGD1r3/9q0+4ivDAIAiCIBgiwssqCIIgCIIgCIZuPh2iVRAEQRAEQRAEQRAEQTDqCNEqCIIgCIIgCIIgCIIgGHWEaBUEQRAEQRAEQRAEQRCMOkK0CoIgCIJ3MfYE+NOf/jRk1zvwwAOr//mf/xm2648E119/ffXRj350yK+77777VtNMM03anP+FF14Yp6wWW2yx6he/+EV6+bstSy+9dPXjH/94yNMbvPf42te+Vv3whz+sRjv6TewXODjmmWee6rLLLhvSa37605+uLr744iG95oRKOb7rU/pWxjPgnnvuGW9p8XzwnBitRH8O+kuIVkEQBEEwHjCBnGyyydLk9UMf+lAyIM4777xqQuN73/te9b//+7/VhMRPfvKTVN5TTjllNd1001Wbb7559eyzzw7rPZ944olq//33r+644450As7HP/7xcb7z+9//vvr617+eXv4O+s/Pfvaz6vOf/3z1buKxxx5LBt0///nPakKFmDHFFFOk8e7DH/5wtdBCC1XXXXfdSCfrPc19991Xrbrqqh37TV1omdD74hFHHFF95jOfSc9biwfLL7986ltt+OY3v1ntuOOOQ5YWz4DPfe5zQ1LOE8qizUhhgWj77bevPvWpT6Xxx1ikPv/yl7+kz/096aSTpnbxkY98JLWRb3/729Wjjz461nWuuOKKauGFF07f+djHPlZ98YtfrH71q1+NUK6CEK2CIAiCYDxxyCGHpMnryy+/XB166KFJrHj88cer0cJbb71VvdvYddddU1kfe+yx1ZgxY6rbb7+9euWVV6ovf/nL6f/DVY6MIxNmE+dgeJgQ2+vbb7/dd4T3u71siNvGO+LbFltsUa2xxhrVG2+8MdLJmuDRft55552RTsao5qyzzkpj/oUXXpjG+4ceeqjacsstw7vnXY5nOq9l86qrrroqzbV4dS2yyCJJhMp85zvfSe3C932PiLXAAgtUDzzwQPr84YcfrtZdd920SPfiiy9Wf//736vDDz88CV3ByBCiVRAEQRCMZ0ycv/rVr6bVzT//+c997//xj3+slllmmWqqqaaqZp999urkk08e67NFF100eS1MPfXU1Wqrrdb32TPPPFNttNFG1QwzzJCuueSSS1avv/563+e33HJLNe+886bfrr766n1iTfboOP3009P9PvnJT/ZMR9Mq8Q033FDNOeec6d7rr79+3/WbVnDLcKT8+SmnnFLNNNNMyRtp9913H+v7DI/82fe///20km9Fvw0mnkcddVR19tlnV8suu2z1/ve/v5p55pnT/9/3vvelz+r3UobTTz99tc8++4wlLlx77bVp1VV6eW1deumlfZ9ZueW9td5666UyPvjgg6sVV1wxlQPhyr3r3HbbbdXiiy+eVnB5AWy44YZphTjz5ptvVj/4wQ+q2WabLU2UrdKrlwxPsZVWWil99oUvfGGs0BNCwbbbbpvyOu2001abbLLJOHX+85//PNWt/Eh/Fjm+8pWvVCeccEL6228mmWSSao899kj/Vx7S+oc//CH9X10R5aRh7rnnHstz0ER/zTXXTPlzjwUXXLBPoBUOOcccc6TfzTjjjMkjLdOr7fEU2XrrrdPnK6+8clohl3fl7PW3v/0tffecc86p5ptvvnRvK+SlJxuvR2lfbrnlqg984AOpXz311FPp+vKnH1x00UVj1e9mm22W2q57uO5NN93U97myy3WlnepjTz/9dN/nypu3nz7ofurnyCOP7CsDv/N5RjuDdLif8mryYin7Qv5cu9V+N9hgg6qJCy64IJUr74FvfetbSUQrGegY1A19TRtkJOb6ycLCZz/72VRHROSyfRO69CefzTXXXNWNN9441jXblLl23DTu/fvf/071KQ/KwXeI2bmNH3PMMeme7q2tZEO2V9/qdt1e9Lovb5GDDjoolT+P0fvvv7+vXel72tXGG29cvfTSS2kMlmdG+IMPPjhOKN+dd945Tr8588wzU+i38MH8Xpt0ZZquWdZ1+T11rX3pa0LNy3GvHm7ob+9l9Btlr99437OjCc88/VsdQNq1p7yIIG0rrLBCSoMxyvM4e2HJrz7305/+NOXDeN+mzbUJHZSfgZSzvFp8Uf/yvtRSSyVv3tKLLn+m/9bT1WmsVvbG/Pys8vrtb3/b6pln/DDOuKbnv+d5JwbTn5XNd7/73TSuadc8ozqFuQqLNN4Y59zH3+7pmbHDDjs0/maWWWZJZa/8jJ+5nfLKNuZPPPHE1eSTT57KfIklluiYx2B4CdEqCIIgCMYz//nPf6pLLrkkCUvZECU8mUSbXP3jH/9Ik1sTqF//+tfpc4YSI9Hkj4G922679V3L+8QFhszzzz+fJsUma5lzzz23+s1vfpMm6k8++eQ4Yo3JqDA27vG90tEEAUToj0k/o6k/YRUMWem2Ek4IOO644/omv+5pImsCaqVTnkzOS0xISwGhxKSbKMJIKlFWJtBXX331WOlgNBO63P+0005LhhzuvvvutOpKjCLGnHjiiclALAVHXiWEK/Wzyy67pFVdhisjV9nXMRE+7LDDqueeey4Zeuomi0Pwt1CEK6+8Mq0Wn3/++WOFGCpzRozyFnq13Xbb9X3GcJZO6VanDALtp0T6TMyVvXJmpIHBk8O4lANjKf/f9Xh4MIYx//zzJ6NcntWTMskhFlalCSLaKsPo1FNPTcbNq6++mgwe/1fm6pP4hDZtT3lYNVdu//d//5eECYKecvZi0Co3HnaEHOWw5557pj5SGsfqi6Hi82wEMqS1M3uRMchKbyVCZ65fq/SMqhy+t9dee1W/+93vUjv0e0ZVXTTye+1NXRIYGJDahf8zvPVn18iCJvRVeeKR2YZ77703tW1tSfuoIzyGOKr/KwtCovLMDHQM6oV2QBjXF7MAwWh1H33JvdZZZ53UDrIAJLzHfYwpyin3xUybMu807p1xxhnVXXfdVf31r39N9+CNwyDG8ccfn9qmtmUsXWuttVKeici9+la36/ai132hPbuHNkEkgOeIMjB+al/asbFAGj1b6osA0H/r/Yb4xquEKJzfa5uuTtfUF+sYw42jRHftVTsqx71uaL8WLuTT2HHrrbf2Cbx1LAio/wMOOCC1k7qHn+fmzjvvnIQfYjohUJ/PbU+f08/lIz9z2rS5XhBBBlrORF7jlv5iDNl77737+pfxiEinX3v+18W8TmO1Z0r5rPIizLR55v3yl79MQqVr+sy43onB9OdrrrkmjZ+ez8ZLz3WfN8FrylhiHOwvfmcBDsZGopkxyhipDIKRJUSrIAiCIBhPMJ6JLCacJqUm4FbrwcjkIUVMIWhYId50003TZA28hEyuTaTsjeW7MBG1ImvSa8XYZI1I4zsZhov7uPfaa6/d5ymTYZj6zMS9VzqacP1PfOIT6Rq8ZnyXUdAGq6g/+tGP0komrwuu/Tl9rsN4YJhw3zdJV3YlJsJ1USpj8i9dTXjf5D8jvcI3lYEVWoZoNvxN2E3IeUwxutyP0cEoyvCs4vnkc9fohUmxvKpXhi2RJYt1ysQ9szeOVXpGahlqyLOOIaK+v/GNb/SVmTwR+Yh/ua3tt99+ycAoQ4oYLsQa5UAsyL8nWuV0MC6sThPyGAv+zyjOgqi60a60EwaGcsseTfLFgGJM+5wBTRTKn2mzrpk9odCm7XlPXch3p3KWd4IKDzRp1dekrdyPRPnxHtBPeIQR0xhWrpu9P8rQXXWfxWGGmlV4q/3qikeGuuKlp51qzwyw0hMi9xH3kyb9kAehulXm2k43T4U2MDwZf9LQVDbaAMO2zIf2lRnoGNQJ7SO3QUIuA1ja8r3UgWu4LqHb+HX55ZendiqtytHvlVspkPWnzJvGPfcjemiDrsUAVhe57egvykUZaRMWFwgkvfpWt+v2ott9Mwxo44C6yeVo3NCvlJG+qU0bn1yD6FB6rw2ENunqD8Ys6VNW+hDhqG27l2/lSkSSBr/n9diEPkwoNR7xoiLOEKX0cxBPeRh57vDe0W94GHV6brVtc8NZzkQ0XkHSrG/l9nzzzTenZx1PUen60pe+lLztSrqN1U20eeatssoqySPMNY0TxoZyYSAz2P6srRAd1TuRmBjaSbTSR4njA8HvsjilnN2fiCe0mUceQf+RRx4Z0LWDwROiVRAEQRCMJ4R3EFlMRq1YWjU3OYQVSEa1SV1+8QSx6giePyZuxA4TzhxOZKJosmXT406Uq/0MLYZVSbki3isdTZRiir+tDpeCUDcYDKWBXaaPcVwafSavJrVtEabTKXzD+yaiGYZAFhBzPngB5DLhRVCWCQ+H8tpNXgXd4I1hjx8TeGXAgGd4QNm99tprYwkKveo0r9hLK8PLpDunlSjE8OBJ0+n3ucwJPdlAIFLZvJjBwqDz/zLUkecKI5lY4j48J3IeGCVW7Akg7kX80u7dizeB8lO3rp09udq0vTbl7Dq8GcrrCM3J9QkGbyZv0F/+H7lMUd+bLLcP+WUIE1/yveSX4VUas/V082xT1gQHv5HvXHYDxThQeljW0V6b8pEZ6BjUCXk03vkNw1qbyJ5dPJ/KsC9os95XDsaQ+riSaVvmndp49goh2hkj/J3LXhnoi2UZ8GaUrl59q9t1e9Htvt3afq92XLbhgdAmXUM17vVC6JhnpnYnnxYKup1cy3OGCCq9PHB4aPG8ymMsr0NjkHRoS8I768/G/ra54SznTu1Zv1aeno+Zej/vNlZ3Sk+vZ149PWgqv8H2Z6I+71eLVvoVAbq+aXrG5+U43x/8Li+swPhMXFcHvPyIa+ooGBlCtAqCIAiCEcB+MVYq894MJs88Phh5+WUCmL1DTNi51DOOuP5bYbfSmo3nwWxwXBq6vdLRROmRIhTHZJMgZH8MQkW5N1Q38auOiXhpEAiD6M/veZUomxx2Va782tPDymlG+Qk5K/ORV2yVCdGlLBPGIO+2TDexoAmGresLz+NxJPQjl5OyY3Ay8PqLtEoL46JMr/y1WYG2as54sDJu1Zn3G6FKiIaQLgYEhHFY2dcmGVfuwTMn50Hd81wjzhIshJhZTc/1kkUa3iBCZogBbdpevZybyt11nBxWXodR1DYMqYn6gQm5ffDgUFc8Isr7afc86ZrS6be844R3anO+byzIZdeUJ+VJyCwpRchOv6v3p6Z8ZAY6BvWCN5nwMSFbRIS8X1f9JDf/9z7DM3t1NaWzbZl3gicLUVMoH68o12YU5zIwNpTXVe48d3r1rW7X7UW3+w50jOlG07U69aVe6epP+rqNe03tvD7eE8GJ3MILeW0RCtu0P+I4ESvv/cfr2X1yyFneY6lTHxxsmxvKcm7q19pkGc5c9pdeY3Wn9PR65rVlKPozLzP7lPkdL0+eaE3wWOUNWd+rrw1C8HmONWHsUx7l3pHB+CVEqyAIgiAYAbJXQz4G2+SbJ4sJl8mnl1XkvJGvCaeJugm4lUgTTQKDlX4hIyZ1JnomayapVo0HQq90NGFvpmzICTsTfiB9XPhNVoUXEYrsx2EfpbaYsPut/bakQ8hADu9oKwzm/UmEoLgGEcxqqZXfcu8t6WXIZC844Rp5L6GtttoqhZowluRD2RJimjYkbgtDSXieVX5pUoYZdSyURUgV4YpxIU1tTpq0Qk0EEt6YV9KJDOXG4r0gTB199NEp3AhEK/nnjZY3NpZ+7Y/ARnDihWP1PkOMtTrtM3nUDhj12rC0EEP832d5/5GBtD0eFwzb8uCBbbbZJpUnQUXZMf7sgzJQ7xBIF8FF/7I5uXsKO9JuGOLqKgusQmSIfp1g/EkXzz6/Nw6U+6spU+8Ly8wIrxSawuNNGgheTaE43WDwEw/LfORj4AczBrWBsSftebzTB3liEZSlxSEI8kO8c01pNZYYU4wtZf8YSJmXyKN8uS8PEe06t0Ftx33z3j3aOQ8T7bVX3+p2XeNPt5Prut13OGjqN94zxpQGf3/S1XTN/ox72bvFc4IQqL0bhzPSQDx3fQsjBK5OexcZr6Qz7ztnbPL/LIJIB6FEO9Z26uKivLh/KewMps3Vrz2Ycq5jA3EeQkLzPdeIP2W6eo3V0uM+5aLNUD7zBtufjT9CGeWNR7m+1aned9ppp5Re98vPH/vkGes805pQF35HFMuHxBirLLJkzzL93DX6K1AGQ0eIVkEQBEEwnnACTj6hx8qv0CsTOVh9FsIgXFAInImkiawJJxjdVpb9VniFSR9D1oRPuBXDnHhlVdNeWW33lKrTKx1NMEAJHfl0ojw5ZJiY6PFwsZrKQLUS2hblY78thiKD0SSfEFbu11WedtSEfTJMSO0HIz1CmxiTJsH20MlIt/KcddZZk6eRjYl5w4CXCENKuZr4KyOhCgMVBnO6CDvSpD6FPJTwUuKRpAx8h0dS281gbdicQ5f8VpheG4+YjLpU3zkUkFDFWMheVrAPFs8FIoSVfuGEPGkyxDbfyadV2WdFHWiX2oeVfKEqjFIr3NrxQNqeNDLa/FaercTbs8n+SYQ/dSycyz0H2icglEhbziFzDMrcfoT9yp+0yK82VopQdZSHPXR8X79gnNlIOaOstXt77rgf4ZYAS6hS5spG28unmrXF+CDchZDrvozbvAn+YMagbqJzHu/kT/3nza4JooQqm9tLi9MebQidTxv1md8ZU5RT3aOmv2VeQniTNvfSNrTDfGoYQUpYn33Q9B2ehuWeat36VrfrapfdDN5e9x1qmvqNMca9jXG5HvqTrqZr9nfcszBB2MgnqhqHM0QL4652qc0QCTudJOv+vC2N59qHZ4i6yRvTE6mMUfqwcUtfK7GPUQ4Xy/tmDabNlQy2nOtYEHCYir4rvZ63DgxoO1YbF/RD41I+2GSon3mD6c/GH4ty6tw8gJDUSYDS5zzbpdez07XUn7mHRYYMQSqLp56zFsN43Sl3aBfKUzqIZMRU7wlPzRh/8wEmwfAz0ZgxY/5/n8wgCIIgCAYMwzsfYR0MPYwWE1f74pST7iAYThiTjDnHqQfBQLBRNQ/U/oj2QRAE72X+9a9/9S029f88yCAIgiAIgvGEY+Otgpu4WPUlWuXT5oIgCCYEhFoFQRAEAyPCA4MgCIIgGLUIZxKqJKyB+74wiHzcexAEQRAEQfDuJsIDgyAIgmCIiPDAIAiCIAiCIBi68MDwtAqCIAiCIAiCIAiCIAhGHSFaBUEQBMG7BCcplad5ffrTn64uvvji6r2KY7Sd2DjamGiiiao//elP6e8DDzwwnWo1IbP00kvHJuUdcLLlJz/5yWo0cP311/edVgZ7xTlFK3h38Pjjj6fTVQdzqulQ8c4776TT6h544IFhH0OHCqfwembylvbcrI9rniWeKU5F9J0xY8a0uu4Pf/jDdHphEAQDJ0SrIAiCIBhPODLeEekmvI5mZjTeeeed1YTC66+/njZDn2OOOdIx0IxxR2nnI99HGyeccEJ1yCGHjPf73nvvvalcHBWejy9Xbk1Gzve+9710tPhw8NhjjyXjzhHyg+GFF16ott9++3RcubbLsHOi3l/+8pdqQuPtt99OZZ6NU/ulrbrqqtUrr7wyLPfT35988slqfMHwXnLJJdNx7g4tWHjhhVM/aOKKK65IR8mPDwF9IGhj9q+TF+MlQYZo8Oijj47XdPz973+vNtxww2r66adPaZl11lmrnXbaadSJtj/4wQ+q7bbbrppsssnS/3fbbbdqzjnnTGmeZZZZqoMOOmis77/11lvVtttuW33sYx+rpppqqvRb/QOEr29961vpd34/11xzVaeddtpYv3/55ZdTuRjjpptuumr//ffv+2ziiSeudt1119TXhuI5aT/D4UadyoOQpCaRybNEX5p55pnTd6QtGJln0mjj3bBAeMUVV6TnhXZtTHDgza9+9atqtBCiVRAEQRCMB2wgbiK8ySabJCPI5I1x6TUhCFcMnBVXXDF5a/zyl79Mk84///nP1VprrVVddNFFI5Ke0Qjj6ktf+lIy8u66665k2F155ZXVG2+8Ud19993VhAahbbHFFkteHFdddVXKDw+HRRZZJE1yJzQOPvjg6uqrr66uu+66ZHiqI214oGQjfzRw/PHHV9/4xjeS2EAoe/7559N7l112WTWhQlQjKGqH2h8Ra4EFFhg2D54mNt5442ryySevHnzwwZSOa665ZtBC2FCPZYRlJ61+/etf73tPmr1nrNZXTzzxxOqkk07q+/xHP/pRddNNN1X3339/dd999yWvQJ6fuV0TdAlI+jzxb5dddkl9J0PkevHFF5Pnkd+efPLJ1Zlnntn3OeH+17/+dfp8KJ6Td9xxRzUc5PInhvIOC95bz+zRMMaPdNk8/PDD1brrrptEZn1a3zv88MOTYD1aCNEqCIIgCIaZ//73v9UOO+xQ7bHHHsmgNBGwkrXnnntW6623XloR77QKueOOOyaPg3JysdpqqyUvHp4vDI+8UWUvGCBW0oQIzTPPPMlAaMvZZ5+dDEUG8Be+8IXq/e9/f/K2stIuDXniJU9WoqVv/fXXr/7xj3/0XUPejj766LT6Lw0+L72PuuUte0zss88+yeNhgw02SGEXvs9bwPXcl6CWUW7KL/PQQw9Vq6++ero+z4IsVtTDpsBwcn2YxK255pqpznxvwQUXTCJOEww7+ZJ2Jx5CXkwAeQ/0Ch1RRj/5yU+queeeO5Uvg/mll15K1+TRwGBnPGeOPPLI5PmmTc0222zptxl1DR5xvBZ+8Ytf9AlryyyzTCqD2WefPRmbneBB4oCBCy64IAlx/lYGW2+9dWrTmWeffbZaaaWVUjq0j3vuuadVGnObd0qktLi2eisn8eeff376zAqw/sMzKtdNf/Nzyy23VGussUbyIMG0005bbbbZZmNNzs8555xqvvnmS2mx2vz73/9+LK+a3XffPQm46of3it++9tprfd8x4SeuPPXUU+O0rTfffDN5xCgHv2MkZy8Sec6f8ZLSVp9++umqDYQd4UvHHHNMajPKSrlqq51Eq9JDKKdTuOCMM86Y2rrPtDUCpbannb766qt9v99oo41SG/eZ+xACQYTnEaUNaHdeWbjoVra9UGfyt+iii6ZxYKDp8P6Xv/zl1F6MBcJziT7d2symm26a0qz9qx/iYO7vBBtl7/q8gnJ/MLa7vnFpr7326jN+c1kTFH1GFB7s+EzQ49EpTxleQ67D60nfNd4RqTI8p3iAEqe8pPHUU09Nn2nb++23X8qrdqTM9bH8e+1dXRrnpJcXHBEr/z5fQx1ffvnlg35OGv94bpXccMMNQ/Is0ZfVnc/Vhb/rIZbGYNczXrgfEY3gXcJjdv7550/t0D3dpwyX7PSckm/tWh35XL8sRVlePIceemiqA2Wy1FJLVU888USf95dnYUb7973M2muvXR1xxBHp77POOquad9550zWkYe+99073zmnQhpWH9KvPPG4Yn1zT+1NPPXUqh8xzzz2XhNJ8wq/nbS67pnY+kGeSsd6Yv9VWW6VxzTjg2jybfFcb0XYzuX4JMMZR966HQfdnjCf4EmsXWmihdH95JabzPAexx7hiHJEnY06vuVz+/PTTT095aAoh1xc8m0oOOeSQ9JxtO9/iGajO1Z3nSaeQVmMib0ljvPGC4K2dlXOWXnPPbuOXfOvT2qr2p9+qw/4QolUQBEEQDDPCqExSCDx1vGfyzROnFwyF5ZZbLr0YxIwlky8Tn17w8jG54mlChLHqzrjlLQXGSF24qRtFDLJu32HAm+i6llVrk6Zy5R/ECUal8mAIZFGpTd6E3U0yySRpgug6OV0MCEanSdQWW2zRGOrF2F5++eXTBM69n3nmmWRktYHgxOCULvdhmDWtQMqDdA92j6pLLrkklSGRzWTZ5DF7NZiMm1BnTB5/85vfJG+IU045JQmgv/vd79Jnt912W/qX1w2vInUh3yussEISnUxwTfwZbzwimlC+PCaUezfUB8NKnZrcl2XbLY0ZhoGJM68PacnGjL6jnRK6lL1JsTRl+pufxRdfvDruuOOSIMNzo76KLhyCcczwUd6MAhP1UtTwmbamTH1X/kpvQ2lXZ8SfOgxy9+B9pzwIcgwrMLyUi7onfDEcS4O0GzfffHNqf4SSgaLf6Bv67nnnnZfy5iWNjOS//vWvadzI6KuMa2UjndqJaxBWGUsEOWXkxbBqU7ZtcB9j5kDTQXgyDhKWjCn6tXrphDZjnOJFVA+JJQgw7BiTrp+9D43rhH1laUzQLvWPsqyJHkRBeek1PveC9yPRoxNEiRtvvDEZ6tBPjQulx5i/ja1Nhq3nk/Ek/166CLD139e9SYnv5d5TxAd5HMhzUr/IQsFQPkuIauoOxAt/5xDLDOOcUKk+9U3loK9l0UdYLlHqqKOOSkLF7bffngSsTLfnFFHHM8U1eEcSF/UL5ZshOBHFjHGEFIITCD3Z+FcG8uu54drS5rNll102fW6c4Xln3CEo8LqzGAXeg/4mHvmcAGH8gXxJj3y5fl5kc31CCKGLoEEc1qbzIlZTOx/oM8lzkFijb+gXhGrPSdc2ZuqHZQip+jX/UFcEQv1b+x/IGG/eMMUUUyQhzffdT7uzGANjpXFF/fh+p3DsJtSD51BTyLN8Wiyqt/lNNtmk9Xzr3HPPTc9e7VyZa59NEDstkKgDzyb5LOnVp9qMX+qBoKcd+axcjG1DiFZBEARBMMyYiCJ73pR4j+FcnyQ0YXJtVdHknCeHiZLVuDzx7IZJhEmCCSyjjacBA8KkBv7fbZ8Jk8kmI7zEhMrKvXRZcTSpMxkuvUUILvJM/OIJIO0MgjZ5s8rJsPf5lFNOmd7j1cN4sDpoImSi37TXkskdI/KAAw5Ik37XMOFvg9+Z0DIG3IdxVno0ZBgNVtR7lVMvTKhdXzkRP6xaqh9GlolhOTm3kj7TTDOlCav8mNh3W8FUR4ynXGZEPF4kndpQm3oHI4KRJo2Mu3KfszZp5GFECJTnlVdeue/3Jromyt5zbau12ZgaSH54EzBGGIhW1HkOMGjUGwhajDLtSj9hQBIDyr09GNDEM/lhzDAisohaNyxKGHn6YfY883srzkQvn/EG8JmVfO1TOhlI2auiG+pJXvxuMOy7777pGgw1bZAxp+70vVVWWWWstqecva9/KDP9uFsIbJuybYP2WI6X/U2Hdqo/+T7vgp133rlrn2GUKgdCp76ovrqNuYw6hqK6NA76vnGr9LyRRgaeccyr1/jcC2MPb4pOGJcZnoxSZJGmXITIf9dFf22TyKLNZu9UvzeOlmK239d/K03SVo7DnQTCXs9JfbSs96F+lnSD4EMMlWd9Xt/0nMnPNn3XPXL98cgimma6Paf0C15tyld52j+QUHHrrbf2/Z5nDw8jHjCEiTw+Eht8l9ivDRsLeTQRFbJYmIVFi07GTuOO9yyu5HavLxAmhYny4FFmeZz1Gc9ieSXmuQeILZ6Jhx12WCpDZcS7qSznejtvos0YLp/ans8J01loVh+EUSJiOTZ5n4eW+hWur8xy6OpAxnjCtPp0f3va8frqr6dQE8Q57bepbCz+8MAizsGiDvGJ13d/5lvZO9BzuNP+o9qWZ41+ra/zpiIkPvLII+nzXn2qzfjl+eGZqwzVrzbVnwWL7stmQRAEQRAMGsYkTCZMeEq8Z2LkO71CgawoW0EsDQ2TQkZlL/yWIVWuNhPLuhk69TyYKHbDSp5QhgyDwiTX+2WoXMbfJu8M7jZ5Y6yaEJVY5c3kCWaTp5UJUg516S8muCb0JtW8ELjhm4i7V4lJnfQpp25eD71gSGdMZssy8f9scGavHqvMyk95MUxz6FsTvmdyXl6TMdgUuti23uv1wGDobxrrv88Cqj5Rb98mzAPNj/oxKffS/q3gM1D0yy233DJdj+FVhp8x4soyKO8PBhHjwaq+cBleB037ZGnn8s44bTLYeQMy3so2ykAgWvXq4+rJNfSngQpXRMOyTWtr9baY61U98vZglPBYUq48NLLw0ESbsm2D72fReCDp4DEmrI83jPy4BsO8E8ZIBrCX7zPQiJKMWCF5dYx3xIWy7LSvckN+ZV222cGOz8YeHitNGKt4RfB00bfAyIXxLD+fsodV6UVKsCKY8JjgfZPHX7/XlqUxC1d+X/dAVRfSNhTPScZuuVgw1M+SbhCGtBljDeEs/1Y7cy3Plyahus1zSnqJ/vKXkZeyvdTHx/xbvzHW8fzhzWRRQHie//sNkSCPJ7y9iNLEMv3O93I4q9/5TF/itUi05mFsnBZG6jPCkbrkeeUl3cbpsk60l7wA0NTOm2gzhtfHoab3ymeO+UbZp7WP7J05kDHeWMEjizeZtqDdW3AYLPX71CFwEts22GCD9C/hKee/zXyrU7tpgoiXF188wwhz2iXvw159qs34VU8LpCd7GvciPK2CIAiCYJixYmnS1HRKnPesjDI0syFR3x8nY4Jg4miimF+MAqujvfBbK2Plb03yhCa0gXcMt/Fux3xbFTR5yTCiTIzL/RrKvaCsGsq3Vb02eeuPkVFH+ZuI5XCOEuVuIlp+Vpa7z4X/MNyEYQlbqO+RAZNJE20G4vhA+fFqEnZELFFmVjNzPprKSzlbqS3L2cSxk7eLeheiMNDNaHulsRcm33VPo3Jj5/7mp4SxLS08ufIeXK5HYCuvR0wqvUPq5cpo5RFn1dmkn2CVJ+Ul2rk2QjSpY+LuM94V5b21y7znUTd8x+95BY0P5NXLCrwxQVp5r/Rqe73Ktg3CFRnjA02HEBV1xjvFGCP0qm17NBYQL9zD75vuYbwjchPRMsbFchys/2aw4zPPmXKvu1KwEq7EoCzvT3zw/zJ0z9/Zqw7KZJtttkltkrhbnpbHYCcKlPs6+X19I3Nl1HbT+l7PSWGapag6Pp8l2i0vFaFYrpWfc7ndSHdTv26D9Oq3ZXrNAdqGmROciFTqmKeLV/5/9iYmghmXCBHEGX1FPyjbPXHS/m3KkvjB4wsWewgmnufCu3kCKwvp5sVTptt1S/GoXs5D8UxqA5Gz3BdRnrLH8EDGeHWhLHkeqX8HFpRlV/9+r7lcp9/VsSBivvHUU0+lPkDE6s98a6Coc+NR+Vzs1qcGO361IUSrIAiCIBhmrHTaS8AeBPau8DD3UCeEMJjyHhBWmq28nXHGGWkVy8SznLhxt2YIEUwYRVYjCSlt3NRNVq2CuabfmdwQYNqewmXyxHtImAw3dSIGg5qHQ95fw6qcyRyRQR6F3VixLcM9hBKYUMq/kDAriCZug8lbG7761a+mPLunCapJfN6wmbHEAGP8uq/JYXmio5AWq9PqxMqh73ba48lkWEibVdzs+WDlU1iakI2hRBmbODMclKG2Up7uxYDzPrEuY9LLmCFEmdR7MTatJHc6Bl6Z8DLLZcAwsb+HTfUHm8ZeuC8PD7/R5qz6l+Gf/c2Pfuh6OV1CIrSxLAwx0rVRRpnPGR2+X3o9NMHLQr/Vhjp5XBgHhDcSPRi4rq+NM76VDSPSZ1mkEzpRP1ig0z4gPBqMJwxNnm0MCtdXFvadGWpcn0hgzNKXhDeVq/i8IBhp5X4sAy3bjHLSHhnWeSP+gaTDb5SXvqyspamXp6VydH0vhrsxhBGX71H2McYxA5dx73sMZmHJefP2gYzP2mg3L1GbRvtuGYpHKDaeumbplZQRoiNdxikvYzcPxAxvGv1DyFHdW4pAyuPU2G88ECZ27LHHjvV79asfEoYH+5y0EFDuCTa+nyXaDO855SBdPHXq9Wc85M1jjCTQtz0VWL+Q/rz/j3sJCevmFVOirRkf1QMxkXCoT0lL3s9Ke1IWxHGCFCGyDL9TTzxqtG/CYBn6SbBSnuonH0bAw8sG5sQKXqZ5Dy19tNupskPxTGqDfidkVH7k1ZiY93sayDikTuRduehndTGmPgb0msu1RfkKtdt8883H2dKgzXyrLeYm+kv29jceeMbn52KvPjXY+WUbQrQKgiAIgvGAlUSboNrXhJu0yS+Bg4dA9hoAo9zD36q2MJRyI2ardyZXVt64hZuACm3qFBZSIpSFGGOCaeLIsGJw5JN+TFry6mAThBrhBTyJ7KvE4BPmRLTKeyxwn+eZYw8J6TP5JMqVmGiZeDGiGI5Z+BhM3tqQr2+iajJp3yB7W0BeTNCstLovQy2f0AMCgz2VpNf+GfKX94apw5D1e6709r9xbRNJ5VduzDsUSIt9WRgm0k3gKAUKxgfxLG+gz0hR7+pR21IGJtsm8SblTWiHjBm/kw9lYP8QeSQEDjaNvWCEmfgrb783EXatvFFyf/PD6GBw+p0yISIxGLNXA1GWd4r39VHhMdporxM6eTHYDJdBlg3FJhjgPLuUpbahL+V9ehjr2pbfK2dtqRT4iB+8TTqhjIwdPGsYLgwnIY8MjqGGAJP3dxLKpa2VK/zy4MSxXM7SPpCyZSRlgUm5MUbtXZPD8gaSDnu/EKJd00mSQm66YYw0Dmt/xm5lTFTIoTn2eTG2uH4ua32NUCZd6kxfKQ9Q6O/4LN3dPO7UtXE4H2AAQrnxk4iRT0/M4WBwfe1NWXpJZxZjiA/KnmEqD/n3hNWMwxGMD8rbbxnWpWBLhMhjfcb9GdqdkAe/U8bK2lhN0GAMO8VypJ4lBAFCjfHFnkvKrcSpa9qVsUeZEHTKE1S7QRwkRhtDtEl10WafygxPNgJTnkcQl3h+5ucV/O15ZzxwD2Il0TFjvORplds48SKXp7L07FKu+gvBxz2Vh37EC0ia5Vs77+ZxNhTPpDaoI4scrmcvMvnNgs9AxiFpEy6Z+0D9gAz9Rn+QJ+XYay7XH/Spq666KrX3UrhuM99qi3JwD88cz0ihgt7z7G3Tp3qNX0PBRGPGjGnnDxsEQRAEQVcYrN2En3rYhImlzX3rJ768WzHhsvrcNlwkCDoJWYSm90q/gck/sZAY2m3/peDdCa8oRm8pptcRKsTjilhSP/1ufEMAMM7zkMrCSRCMDywMmleVoa/BhEnecxCxEXsQBEEQjAAm8jlUivdA0x44QRD8v+PkeREIj7CaLdyL59t7CSJEeXx48N6i3OC4Ezwgmk5OHakFnG4nOAZBEPSHEK2CIAiCYIQQQuAVBEFnhC0IAxP+wMvq0ksvbX3iUBAEQRAEEzYRHhgEQRAEIxAeGARBEARBEARB9/DA2Ig9CIIgCIIgCIIgCIIgGHWEaBUEQRAEwbBuitpt43UnSeWT2/qDI++d2PRuwelRTiEbzk3w225M62QnJ4cF/ccR4E6QytiLy6bA+YTO8mS74b73SLahoRwjgpFnoOP0cGMfr4svvjj97eTEbicsTggM93NgQsYJmjzZx4wZMyzXd2jAeuutV40vnMD75S9/edDXWXo8PmNGkhCtgiAIguBdhqOGHXPuGOymCfA111yTjjTOR2JfeeWVY33u6GJHWJsg2nPr9ttvH+uEKsZrPgLdyxHSA8VR0e432hguA31C4Iorrug7tnsgQshoMrxeeeWVlBdHcGurM800U7+OHi+N4sGyxBJLVE8++WSjsRG8dwRqvPPOO9URRxxRzTvvvOkQjhlmmCEdLuBI+dHISI3ThArjySc+8Yn0vJp99tmr7bbbLh3GUMdpor///e9H9TPh9ddfr77//e9Xc8wxR6p3AsM666xT/eEPf6gmRLThz3zmM6lupplmmmr55ZdPc4ThYOaZZ07hYh/5yEeG/NpC0LRxc6f6ISBLLrlkyp99FBdeeOHqhBNOSJ8Zy4mk3pcmwvtFF13UunwWX3zxdBLsJZdc0jVtL7zwQrX99ttXn/rUp9IzzDNJn2g6dKH+jBlqhvJ52F9CtAqCIAiCdxkm9oceemi1+uqrj/PZI488Uq255prVfvvtl1YsfW/ttddO7+fVv29/+9vJ+8HnW2yxRbXKKquMs7ppYmQC6WViFwSjkZ122ikZCX/84x9TW7355puTWBQEIwmB5bTTTquOO+646sUXX6wef/zxatttt60uuOCC8Z4WBxyMRghWFk0Y9sSol19+OT2fCHw33HBDNaGhnFdcccW0EPDLX/6y+uc//5lOBF1rrbXGETsmBM4666zq2GOPrS688MK0OPDQQw9VW265ZRL3JrR26CTnqaaaKi32ZY4//vh0AMi3vvWtNN95/vnn03uXXXZZ+vxjH/tYmif94x//SPMj3skbbbRR9eijj7YuH9d3Im4nXJcw9vjjj6cDSfQBwukiiyySFpfeS4RoFQRBEATDzFFHHVUtu+yyY71n0jrXXHOlv//73/+mFbnZZpstTZysuGcRKa9uEZcWXXTRtGK31FJLVU888UTH+5kICfH68Ic/PM5nvKp4Wa266qpp43j/Wj0888wz0+dW/dZYY400KZp44omrrbbaKq3uDXZSbRXTiqTV0jL0rPSiUA7f/e53q+mnnz6l3QplniB28lZg6PEEcl1lmnGtY445JpWxzwkVDzzwQMdVcx4vWcxQHjBZlHehMXj44YeTV5kVU6ueP/rRj/o2CW1jgK2wwgrptya7X/3qV8dZkTYhVRbuOd9881U33XRT32cMnHXXXTflRZ5MhsvJrwn/D37wg9SGlDPB8umnn+4aCuEerscwLD0UsgeQFV7tyMQ5e9UJP8C1116bysnv55lnnnSiH5S5MB117Ps+a8KEnpeJ9qzurHCrs9KbT54zPLesLuPf//53tdlmm1VTTz11WuF2ndIbsOSWW25JYU3TTTdd+j/PBqJs5uqrr64WWmihdB3GMK8s3hBQ3urN7+Ul/+65555LooPv8wCRNmnqRem1tssuu6Sy1N5dWzmDsKZNK5Npp5222mSTTfoE41wuP//5z5Mw7VrKpG7saRvSph/ts88+feXard7gOnvuuWe6t3a6/vrrJ4OshFjgBEe/93kpZjPYlIe+u+CCC1bXXXfdOB6exhW/lb6DDjporM/333//lGd1lT3QrOrrf8aB3AabvNT05bI/+FxeVlpppdTGjHn33HNP3+eMUP0xp9U9jLOZoaiHTihD46myN5ZPNtlk1aSTTprG4jw2tnkmHHDAASlf8iCfZX/v1kZzO2SAy59xLodoNtVBk7fbM888k+rb9V2LN4p+M5R9V9slIpx88skpv64rXZ4lTd6S9TBTv9HGjG+8mvQxAqE+Ls28ncpxr9uYNBTPhLPPPjs9g7Rl9UaMk64NN9ww/S7z6quvpvxJh76mvtqkEcqIJ5DvaBeeA2UfvfHGG1OZ+j2xbPPNN++rm/7mx9i63HLLpXtBmQqv87s24437ur/fSKsy1Q8INBntxfPSYkO9bUlXfsbLj/rMXuO9nv91pKucoxGZjM2usfHGG6e26t7GijwnUXfmKOZR7udfc5L8XG9TPj5Xv+7XhD7ouhdccEHKi79dZ+utt6522GGHVuHpu+++e7qP9JpDPvXUU6k/q2PPw3JuNz6fh/0lRKsgCIIgGGZMSgkQpdDE4DEZyn8feeSRyUBjeJjcmTi+/fbbY01WhWcwIk0+6m7sbTHRKye5+b2777674+f+nz/PmIgxik2KH3zwwa73vPfee9OET0gHYWmPPfZIk+c6jFoTe14xBBwTXpPCTlh5ZCwRV0yueYXlyR+D7NRTT01eYFZITdCV6ZtvvtmzjG677bb0L4OG8cpIeu2119LEz8ukj+BA+Dn99NOrNijXnXfeObUBk/Ipp5wyreCWyLtJvEm5yaKyzRN0ITGMGb8lBmgzJXvttVfyQtDOlLNy6xQGZ1V51113TUYeI45xr2yUYwnxy2quCWz2qhN+oC2YwB588MHp9yeeeGJqy7wGhDGYwEq/7993332NaXBtK9DqmcFw0kknpfy34Ywzzqjuuuuu6q9//WsqH9fRFpsQgsGr0PWlu962p5hiimQUy4fyU7b6Is4777xkGOp38sIY9Hv14n4MPEKItJRGZxsIEsrykEMOSdfOq+YMemmRViv2hBDiSYnv3nnnndX999+fwsmIhBntX/+RNgYMb54sSHerNzDwGWTakHvrs+qyRLtTRgyzl156aawwUH2DYagdaXvCnnJ/lF5iOAPKGGbMWGaZZfp+q53oE/qWMWK33XZLeSCU6H8EndwG2yKtxH7pZIjpQ+WYzHh89tlnU/0aK0oGWw/dMG4x5AlS3dLe65lwyimnpD5DQNIeiUho00bVi/fUQ/Za6lQHTWOZtAg/l3fjK8GBQT2UfVc5DXYfLflwD2Vo7GW0C9HSRrWBUsDuNiYNxTNBfghnvcKtpVm6lI/+WYpKbcbNc889t/rNb36TBAbirEUz6AfaBe9Tf3telm22v/kxtroX8dTY+cYbb4z1ea/xBvpefuZpbzzRzHUynt/ElS996Uvj3J+HElFHHpSHPpgFof4+/4neeRERRDLl0WaPK4s/hGdpVCbG9TblA+Hqk08+eZojdWozxtFJJpmkGijKmPimDvKiJyHcPGHfffdN85AsuI/U87ANIVoFQRAEwTBjddhEOU8QrUwRaErRirFvBdQEhgFggp0nyiACzDLLLOlzhuRA98DgXWBlmzHEAPKvyYlJH4QCWnnznomM8BWT3/y5FfJbb701GXIMHqubrpk/b4LIZmXPKqqJnfRnQ7rEyrOJHePJvU2QuolWVqtNKnmEKUsT0rzPg3QTK6TPhE/5WjGU9oFw+eWXpxVfRrp8SJuVzrZCi1V/Bov6s6pMZGIUlKvYVnqzMcho0W6ICFZvGTLyk1dATfAzJo48NEwufSZ9Jo3qsMkjT9n4vfJjaJrQm7ATs9rA+GBISa/f20yWqGCC3hZloW4JI7wjGKelR0E3tBNGN4FE3l3H5L8Jk/Uc7kooUKZ5Eg4GxgILLJDa0Kyzzpo8C7ul44477khhHocddlgy8BmRDNi27aAbxBwr6uqHYavfqHN1rw1keNQxPqxq88ApxwLtiRAmbeqU0JIFzl715nv229G2raQrJ+NU6cFDdHJf6eOVI9+5DW+66aapfaof7asUwxnXhCyhyD73PQJCxrjC+8xnvAP0l8HuH0TEmX/++VN/4n2ay0mf0PcY04w07acUL4aiHrrh+vZY60abZwJvC3WsrolzDEwiRZs2qm7k3+de/akDzw99jzBgTFS+2hLDfSj7bpty6oUycn3tzbNNWRjv9HeegsSCLGT0d0zq7zOhbX6kU/lLoz5loSIvKLRJoz7KW07b1d9yu/Qs4VlDkFVn7kOgGmh+3JugRcjjOaxsCSAWV9o+J4hUvAR9rh3yaCwXZMrFvTran3kF7yflIb324hzI85+IV3qmqyv9QTn0whiXt0lQP+qtTflk3Nf9h6sPbLTRRkn01j9tDeH+ykO5SKO2lb3bRtPzsM7AZbsgCIIgCFpjMsbI42VkpUqYgUkWGBplaIrJBUOo3FCzXI1mRHVyJ++FcAPGl8meyavVQMZkXmkzwbR6aXLFC4GIQnAzGQFjNodKmBQffvjhSYwzMWO4NSEvjJWM1dCmPUl4Xlj540XGqHFf1yfWNVGWiUkrAzSXC08Qk7U8gQTjZKCblLoeA6dcJWf4dTK4miafDADGcg7X4EIvvXlj2TJsIP/fireVYvVT3iu3HfjcRJTXWRkiZcLN0K2nUV5MLIXfZFzfvdqWhZX8cgWeANoUjtoJK8jqmsjo3soih8j1ghFjlZjQIH9WerUTRkYdfYkh7uUeVou1e56CDCYGOE8zK8SMGvnQR7rlnVeAleoM47sUMwaKa2tT9fbOoONN02ksKEOxCBwM1nobalNv9XFIv1V+3vd3vl55bX1K2+YNod8ySI0b0kzI1jbBKMoeCE3k8M2hGOM6lVP20iLCKaeyvZT9aSjqoRvu28s7tc0zoawL5ec76toiQ682Smyre/y0rQN1yZA23vaX/vRd77UdkzpR5olRXf+/cuFRY6zs75jU32dC2/zU2xXUg2dwmzR2mito9/W0afc5/GsgzzheQF7K0SKJBSmeRUTWNs+Jst9Be7DvE3GWaCLc7+ijj268t3ZIlGqiv89/Yl258KaujF1+00a4yuG9hLTS67Fb+WTc1/2bGB99AHlsHE3PwzrhaRUEQRAE4wGhMSZMVj3rq4dWP8v9jUyUTDCH6+hiaRHWwgXc6qCVMi7jGWEDwj6swHEV93f5eQmRpNfGq/JS7vfCqOq0esijzF4QvsMIsyI4EEy0CRQmVPnFOMnhJibz/p+pn0ZVz5PrWdEtr2ey2Sn8rY6JoPvl0MccHlmGq5V7eZTlZOJK9Cu9pnyWYcyYfFpFLtNn0tl0BLy8CE8rv0v0IqjWaQr58XsCXPl7k14T9k6/KdG+eTtYxTUhJ+IxYnNZ5H2LOtWPFWKimzAE4qayYMj1QntiTPBeyfsbaQ/EUvsFqRfGRFkn9bzIO1GozLv09ydsrdu1vae/lNfnfdh2td13eXI29bVe9VYfhwg0jOJyHCrbqGsz1ghWVta9eGsoD9cmxuayJLAICRsITe1JG+nWf7tB/FFOWVDLeRnKeugGzxJGeblHVZ02z4SyLtS5upK+Nm20TShfJ7IQ2hTuNJR9VzmV+xQOJ73GpKF4JsgPEaZ+qMlQprFXu6973tbb/UCfccqGJxWBJo+tvcabpnZITBZSaI4kNNEeeKV4W9JtTOn1/K/Da60Ukj03PVNdoz+Y55hPtSkfqA/9KO971dRmeH2+XYQFDycj+TzsRYhWQRAEQTAesCptwiIsjAhkYpZhSNufwfsMDyE6jI/s0dRfTJxMhKx2efm7FI24dJsEWYHlQk+8Ej6TfyskxAor0Up4EY+D7EVFGGFsuK6Jic1KTcia9pzIEER4mZl0+z3PrPpeOXmVj8eW7ykvwtJA93LYZpttUvhO3j/DBMwm83nVWWicibFykN/6HlFWI8v9XKyi8iARhpfL1rVL13nl0MmV3v1Ngq1iK9cmQ82qNKNfmoiFjD1hBVaLhUHyjjMhJCYQncqJJOOFN1E2Styjk8GnbLjzE1Czp4H9w5pWoZWDMiuFEEaT1XPhSMpBm7UHSN7o1m9MejsZU76vDIlthCRtogwnINJZgbf/jXboPmXoonJSZ8pJG2HodGonylmbIuBJq31g9LPcXtVLDgHLIU/d2oFNnU3U9VHlIo/Eg4Gc5FS/thV6ezjpc1lQUdf9OQRBWyCQyq/2KUwm97Ve9WYcymFo+rY92Hg7Zi8raDdZzNG/eGlmryoClrrTf40rpZcOz00epvKi3rRj4nTbclLGpeGm/9rbx3W0TeFxbVF/PEyJJ8qJkSl8cSjroRtCv4TpWDzgeakejLsEDX2z7TNB+JU6lgfjME9LotZQttEmXJ/3hQUG7UC92AdNOoe67/qusY24Ih+8+oS/DrWY1WtMGugzoUQ/FM7Je9mikTJQd7wT2+xR2SaN3fAs0beFSru39qY+BpofY4lnavYw5KXl/3mhpNd4080rPe+l5e9OuH5uI9qGNpKv3ev5X0edlAdH8ETUziya5T2z3MO98qnMvMXlx3jnpVxdw3YJbcoHyl+/db8m7D+m7NZbb73kXadPGfPMDzp5oA2GkXwe9iJEqyAIgiAYT5iAce9nEJWTFO/bJNikkcFkFZoH1EAFGwYi0ceGpgwff5ebfjNquXMzcOzHYKKVwxAYT/bRyKf3mdxKS15hI0ZIp8+JWVZhnTiTQ9yasIroOvZbItxxjy83YS4nTAwhk3LlwDge6MSMwWk/DSvT0mqvi3KC74Q1E04TNAZfFu0yRDYTVm779n7hQUDYsdmrlV9ptJFvDhcyYVan5ZHZJSbXVoVdj8HcFHbieiaj0mQvJhPcHDYgvQwVBiGj1yS2DFuwiTYhRnindFgxVy+dJujypE24vnpUzk2nRDFObZQ799xzp3QxTu15QYAwUeVlw5hmdOUTg3jq8QTQxmxSW0f6iCnCQNSN9mB/mRIbiJv0a1eM83JTeYaVFWHpkXbfKUMdS/Qh+9qYbKszwp8NrLPh4NrCk/JpSPXN6wkb+pB7aZsERHvDyJ825d6MwYF4Edk7RptybX0KDJ98oqOyEVLXn/3rlC2vAaE1jCFjS27bveotn7anHWnjxoJyU+Qspui7vBzcK/dP97Bvivfd25hTegURmXgMqGvtQtk1hQg3QeBXFtKcQ5cYc8YTBpM2X28/vTAWGMu0C3UuX+WeTIOth/KkzSYYwspMm1Me+rWytAdR22eCMNd8Mqb2mPdMHMo22oRngbQQu40PhCptKo8fQ9V3tSULGQQUHjfqQduUr06evwOlzZjU32dCHd6ynv/aUm7TwtuIVkTMoUhjN7Qze1ga75Q/oVY6crvvb35cw+KJ/i5t5jXq1p5abcabTvBIcr364l4ddWFs9yz0fQJ79hzr9fyvY38vAnW5Ibpra8c2HCfca+fKPo/VFuMIZ8pJHyTwENukv035wN6e9QMeSvQPiy4zzjhjyp/reKYKNdSnh5qRfB72YqIxY8a08ykMgiAIgqDnZD6HRwTvLXgWCC8gHo0PGANWkptCEYIg6B/6La8HG89PCBAV7D3IEA6CgUKkJm7zAH+v45lK1BtfIanEKAKWhaCgGR6/WQwPT6sgCIIgCIJBwmtiOAUr4pSwTu73/nY6YLdV6CAIOmNvOSKz/sSDiidj9Kfg3Q7vWx5FPJ95BRFqeSMF/28/p/ElWIG3bwhW7YnTA4MgCIIgCEY5QhGEMNmThAs+Q0PYRRAE/cfeSMJfhKvZSFiorDDYIHg3Q6C1t5bQTuGZvIuEdQXBaCfCA4MgCIJgiIjwwCAIgiAIgiAYHBEeGARBEARBEARBEARBEIxqQrQKgiAIgmDEueWWW6pFF110vN/XiVvCJYJ3H44an2iiiarHHntspJMyQeMIcyeJ9jr1azhxEl95GqET5Zy45hSrhRdeOL3nRDsblPN2taFyMLqIsTYIgoESolUQBEEQjAeWXnrpdLS0I4vtSTTvvPNWu+yyS9pbpS0//OEPB31a1J///OdqtdVWS8c3Owp6rrnmqg455JC+zxl9I2Hwffe73x3nBCOblH7lK19JR4wzTueff/7q0EMPrd588830OUFiyimnTPlwnLfj0J2o9dZbb/Vdw4azjmnOxuwMM8yQjqx+5ZVX+jZfve2226o777yzX/Xg6HnXU5euvfHGG6dj6evY7HbBBResPvCBD6Q02uy5fhy0fPzpT39qdW95X2edddI9/a6prhyHrayUzec///nq5ptv7ni9yy+/PJ0epYzt7ePaTz75ZON3lWP9no4Ed+y9ctCm7LWVjx3Hyy+/nDapd235X3nllauHH36473PHvduQNqe1CWKJ+reB8PhC+U4xxRSpjr3cvxRQ8vv5JTTYEewZR6MrF+9rk902RlamO+64Y7/EuC222KKvDy+00EJpj5qM+tPOpNnLCWFlf3AvR7irM8ez2+emG06p3G677dL41ZR3L/1httlmq4aLJZZYYqx2ef7556exzJ5U+i922mmnav/9908hJeP7VD1t1L5Y9gkyxhtXTzvttL7Pn3vuuSTYEN7U2QILLFBdeumlrY6gn3nmmdP44Sj5v//9732fXXfdddUyyyyT6rFsn90WBrQF7UZf9Pf999/feuzoNVZcf/31qS2X7WLbbbft+3wgY20QBAFCtAqCIAiC8QRxiFjC6GSsP/XUU0nQYHiNLxg+jBLCwksvvVRdcMEF1ayzzjpk1y8Fo7bce++9yQBdZZVV+t677LLLkmDFsHJanjJzsg8jqzTcHBtNGFGGBx98cHXGGWckUc6pYPAeYYCBx5glLJWnJREVGJM//elP+5VmwpfrjRkzJhl2PFF4ijHcMj/5yU+q73znO0mMe+GFF6oHHnggiQXENd4rA4XQ8POf/3wsz5PMiy++mNLGWFS/22yzTfq/8mtC+gmGNnh/9NFHk0G93nrrjfM95caThehXsuyyyyZD13UYsISLzTbbbCzBQ93meiMG2VA+w3gmonQ7cl3dfe5zn0vG9vjEJsXq2KssPwJKft+LCDfxxBNXG2ywQd939DFtKnsBddpcn9BFtGuL/T3U5/vf//7qL3/5S0rXySefnP6fr0nIcH91Suhz0mTZJtWjNqutEBFXX331vv5SR7u98MIL+zxk6nn3chIfgYKYOxw0jSnaqj5HSCvf005GAmKgvnHttdem8ehnP/tZWpQw9kA5EaoIR+psv/32SyJOXTQqcbKbvnneeecl0Wu66aYby1OJkKWvHXnkka3SaDzYdNNNk2j+zDPPpLap/t95551WY0ebsYKAVrYN7W2wY20QBEGIVkEQBEEwnrEaPffcc1dnnXVWmvgfccQR6X2T/DXWWCOtYpv8W9XO3ju8Ww488MAk5uRVbDCKeFr4PqOJSPL666833pcBy8Deaqut0ko6Q3ueeebpO+rdv8QsxpTrO10LjBziEYGBKFF6jjDOrMjvs88+1fTTT99nuPMwmm+++ZIHwBe/+MUkLnWCx4G8Sg8Y0Ix5BhJBI4sVvBfc71Of+tQ412C0L7XUUsnAvuGGG6orrrgivc9IVKY8IKBsGXq8ITLLLbdcMuQHinLfe++9k0fR7rvvnt4jTu65557VMccck0SyySefPBmdRx99dCoX5TUQJp100lQmxINcXiUXXXRRNeOMMyavDwa9f9WL95vYcMMNk5CpvhnBrn3rrbcmIzzDqOXZwwB1/xJ1ketHvTFMiYyZRx55JIkiviM9PNLuueeevs+XX375ZPhKcyfUjWtk0UaZagvqcI455qiuvPLKPm+XrbfeOrVT9c0bp+Saa65JZe936sJ3hwJCqXSU4hODX7tS750g1Cl/v60jrYssskjqP9rXQQcdlN7XrvXRY489NuVTeRNDsmilfyhrJ0vKJw8o/a+sD+lSb9oPEePpp59O4lQTV111VTpdzL2a0M55NX3zm99MdZvTUPea83/vZ6R/pplmqj7+8Y+ntJafN40pxODsTUQM4lGVx0JeYP7VNtSBv5tCGY23PFyVC+8lfbYU64zL2rixWV+QH+LN+uuv3+cd9eCDDzaWg+8TooyPrkPAJh7mI+0tDOy6665JaFZnhHWeeManTvBiJPBqB66vDRjb1CGITtLY1sPNIoCyVI768W677ZYEqCyg9xo72owVvRjsWBsEwXuTEK2CIAiCYIRgUDL4GCJgdDEMrGLzHGIkMegZVr4nPCt7+HhBCBNPC6vkPF54pXRaeWcgMpQYqjy96t4+VvQZc9nD5IQTTkgGiXvy3GDcMmCE6J199tljeUrJC2OaB9CvfvWrZKAxPqWLeMNI62QYC40jQmSIHsqAeNZfiBW813KZLr744tVxxx2XhLY77rij0cBipCrv0oNrIAiXcQ/eLkQ64mGT15I6zh4YdZQho7IMsesPd999d6Ng4P02KDcihfrMHHXUUUnsIQo2wTCXZkKotld6TfHaIHzw7FAe2oS20B9K0YqooC7tj8Oj5de//nWfiHnAAQckDyLtUQgSAbOEqMhQJ7Qw/LPI0gniLgGIZ5w23QlhYJtvvnm/8sTY55Wzxx57jPOZtBNaCaDChwklBJBcP7PPPntKu/5MdCaaZXxOGCFQEJr0hTLt0ikckHjNg+mUU05J+evkxVbvmyXGJWIVAfDwww9vnXd1xgOPl6c+R8S57777xvpOfUwpIfKXYyEBLI+H+p2/Sw+sjPLSJrQbQvlJJ5001jiGSy65JLVnY5A+qs0TxYxj+lEWpXthzy2hcPpNEzyneF52+rypLytnIlIp+g4GbUW/NeY33a/X2NE0Vih73qTaIK8q3sTDMdYGQfDeIkSrIAiCIBhBrGwziGA136q+VWweGvvuu28KASIWdYLHDXGL14TVfIZ2GaJWwgPAZwQo1/Z9RgSvjm7GNQNDiJE0MbIIEaXXBC8vQoXVe8IFkYg48IUvfCEZpDyNGL6dDH/eDPKeyft8dfO+aVumvLWknfBhXzHGOaEgh8Qg31s6BoP7MuSF0/Bqc6+6ZxIYdZ32MmNA+n02JPsLo7G+v43/5z28ukEs4X1CpMoQdwhFhx12WNdwRWmWJx4w2lRGW8tegDxcCALdrtUkmmh3xFYcf/zxKQyNGKM9KyeGMwhZxAzlK891bzbeSLwGpVMf6xaWRyghnDK6iRZrr712dfvtt4/zPXs8KaNNNtmkdZ6IRbxYhEk1tQ9iCo8Y95Rm5ZcPKdCuCdPEWP3Sd/XHG2+8se9zwoxxgDigPompeR81fZ4QQfgiePs9cboT9b5ZwvNTmRDAS+GiF4QiggZPIfmXRvVRUh9ThgJCnpBC7UYZEMXrYyWxndinDRGsiILat/zxRBUK2QtjAM9EHnRlKHK5L536JWjzkh2OvtwLYqA2QgDMddef+zWNFcZ4/ZX3FvFeORCo85H1QznWBkHw3iJEqyAIgiAYQRjFOfSGJ4rwPvv+mNz7F902oGY0CrGyCu83jPZu37dSz1Dh2cB4Z8g5hSuLPHXsU8SAK41rhm+5AS+xhjiVcVqbdOSNoL0YM/VV94yNfXk/ZLLXR6fv96dMpYsBybuDsMJgZqSfeuqpfd/P95aOweC+DGL5lQf10LQfDxFymmmmqYYDoTv2ninx/zIcsgneG9oCgWqFFVYYa0Nxol+n8LASeebJwwOGtxkIJtql9mWzcCGnhNZy4/C2XlbgHdgUTpfLtQwdrYeR8hLkwUMAI/QSWzohjcQSHjs84xjfPIPqaEfS15/6tLcdwUZIbBPd8qh+ebEQqvRJ4hUvTKFy+XNinPcIXv4l8GXPPuOL6ysr3kDCVe1L1kkYr/fNjJBMohWBrL9t2b2EBmaks75XWn1MGQp4/Ckb7ZQoZhyoj5XG0Yz6r/8/e3R1glCjjO3jJqS7nod8kIJr8ZDN6Bc57DuHZQ+0L6O+YX6JsVuYnjZU7j/X9n6dxgrPFuGXFlD8TRAV3m7hZajH2iAI3luEaBUEQRAEI4RQNeEoPIBATBK6wxvF5J74g7zvSpMRx1tA6BBvD79hSHbaVLkOIYLXCoGBV0nTPRjIjMxSfJGuchPw+m8YpPJCJMov92gKhQKvh3KvGN4QBDv7YvUXaVOGuUxLeBTY7J3BVobY2AyZcVo3nPuLPZTsH8RrRMgVD6EmYUT4ZWnsDSU84eonEfp/tw2qlQXh05455SbpIPblfcW8eFHwKnJSWxPaCUNX+FP2yGCEM1KJLPYqYzR324C6RBhXKVoRouqnL2aIq2XIaz3Ekucf4YlQwUuEGNX2EISmvqe/CaklivYHYYF+l8tUO3dKXN60vVseea51o9fn6kNIn7auPxBQCDid9pyr900ILVR2PMWaPIWIH3VRUnhoWU/aUTkO1sPFhlqwIhbxeuJdRFzWRrXLtmNlG1zLXma8U4mEyrWeBt5a/tUOy4UAAloO+86eb/W+rE8ppzabzdc3zM/oe54X+rmFhf6OHd3GijoE/DpDNdYGQfDeIkSrIAiCIBgBGIL22GE87bzzzn1GMKGDgc/QqBsVJvuM8nJfJr/h2UMosUeK8KlOCMmw6bF7C49jWNqDiHiV961xD0ZphiHtPXvQ2NyYp4o9ZKS9Eww3IWDEI4ac+zDUS++sEp45PANyyB5jxz2c/OffvBeWFXuePE0n7xFLXENIlbAep2JB+Ip7K09pse+XkKAyNMwpXTYYHigMcmKhvYV40YB3kT2Wdthhh+RxwauF0amuCQeDOWlNPbie/Mi3v3PZ8ZpTzjyAGMf+Zeh6vwked4xQ3lT2OqtDXGC45hfBQZlqD3mzaPeTFuVAlMqiI4h3PEqEGGm3hA5tXHgapFv65cM1/J030ZZuYipvogzRQWirtPg+YUq7zwKuNkNkzSe0ZZSFkD99gCCSw6CawtpcU7iddEgX4ZG4zGupLj7aJ2nFFVcc5xruJy9Co+Tb37nfEqyUey5TopxwOQIdhA66Ns8wvzFG5A271aNrETaUHYFE2rKwR1AUwsbzyr396/8OUsj1ceaZZyYvS5+7h/rrJITIm/LN4VzEZ2mQ3k5jAKGLiK4/Sr898Mr97NQTj0chZMpX28ueecNF7jPqi/eccqvvZzVYeC4ZX4Rb1z2J5FM4oHwaD5r23KqjP9o83t5YxlDPA2NbPu1V/cmTtgZ/e3VCvyBYCUFvOgii19jRa6wQtqq/6pfq20EHwitLr8HBjrVBELw3CdEqCIIgCMYT9lcSamEF3qq/EAqGWw5BIWgIrfB/YRYMzBKr9MQQ4TjZ6OahYRPkHFaST+9rwso+LwPeRtJgPyBGlhPJ8p4yDCNhH64vzEXoDsOXACW9jGPp5GnRCaFUxAPGN+PN5ujCkMq9Teor/AybfOJfFrL8//LLL0+nY0kPrxDiWrlKT3xSpk4FtI+W1X8hZXmVX77kSbiRa0gTwSVv8i5N9kIitGX8n7HVjXxymfpwuhcPApuAlx5eBCsn3RFP8ib4BDffy6cZNgkmrtttI3bXsR+R7zCE/Z03qyZAyr/yVsfu7//ZiK5fX9shYPCcKsOJ8uc86sqX9ikv+XpEF/n3G55M2ot6y+VP1GKoM7R5FRFMGO25/Uq39AtDtOGzv/P+VcpYGFJ5SiJRjDEs3+qdEZ3TSpDl+aPvEE7qIhORgljmd/ap8n95gfpW7yBwuo/P9DVlRLjK+0plGPWM9yavIGKPvBButEt/M/bhmmWZChVTfvpX6RFG9FSf9uzKBwsoN33CvbU9IpU95Oy7BH2Fx58Nw32uTFwrnzAnLzwh88mexAt1ksu8jjojWuSycS3eNjafL9tL2W6UMaFKf9VXCUZlf1Jn7qt+5JmwRehsI+QMFHWunLSzLCgTb4YK/ZogKyyQp1w91I8nG3HReKtM8+fE7k4I2+TR5FmhzRCdcj2AsKpdESQJm/726gTxmAefgwzKOtNG24wdvcYKYryQV+/pg+pVH879t2msDYIgaMNEY8aMGTq/2CAIgiB4D8N4re8fErSDkMMY6nYE/HBAuCAClMZgMDogfhJliLXByCHklghHrBoOYYlXD4HQPlmlV13w7iLG2iAI+oMFpLzYGaJVEARBEAwRIVoFwdDBW4dXVZuNp4MJCxu486JjkPAGE6Yo/LfpNMUgCILgvUeIVkEQBEEwDIRoFQRB0Bshh/ZAsv+RUE571wlZDIIgCAKEaBUEQRAEw0CIVkEQBEEQBEEwdKJVbMQeBEEQBEEQBEEQBEEQjDpCtAqCIAiCIAiCIAiCIAhGHSFaBUEQBEEQBEEQBEEQBKOOEK2CIAiCIAiCIAiCIAiCUUeIVkEQBEEQBEEQBEEQBMGoI0SrIAiCIBgiHN/uFQRBEARBEATB4OfTkwzgGkEQBEEQNOAB64jeiSaaaKSTEgRBEARBEAQTHCFaBUEQBMEwEt5WQRAEQRAEQTA0RHhgEARBEARBEARBEARBUI02/j9P6+kk10+1uwAAAABJRU5ErkJggg==",
"text/plain": [
"
"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"import matplotlib.pyplot as plt\n",
"from matplotlib.dates import DateFormatter, MonthLocator \n",
"import matplotlib.ticker as ticker\n",
"import math\n",
"\n",
"# Bereite das DataFrame für die Darstellung vor\n",
"filtered_df = filtered_dataframe.copy()\n",
"\n",
"# Konvertiere 'Time' in das Datetime-Format und extrahiere sowie formatiere die 'Date'-Spalte\n",
"filtered_df['Time'] = pd.to_datetime(filtered_df['Time'])\n",
"filtered_df['Date'] = filtered_df['Time'].dt.date\n",
"\n",
"# Bestimme den Wertebereich für die y-Achse, gerundet auf die nächste Zehnerstelle\n",
"vmax = math.ceil(filtered_df['Mittlere Temperatur (K)'].max() / 10) * 10\n",
"vmin = math.floor(filtered_df['Mittlere Temperatur (K)'].min() / 10) * 10\n",
"\n",
"# Erstelle die Figur und Achsen\n",
"fig, ax = plt.subplots(figsize=(12, 6), facecolor='#f1f1f1', edgecolor='k')\n",
"\n",
"# Plotten die mittlere Temperatur\n",
"ax.plot(filtered_df['Date'],\n",
" filtered_df['Mittlere Temperatur (K)'],\n",
" marker='o',\n",
" markersize=4.5,\n",
" linestyle='--',\n",
" color='#1877F2',\n",
" label=\"Oberflächenwassertemperatur\",\n",
" )\n",
"\n",
"# Formatieren der x-Achse für bessere Lesbarkeit\n",
"ax.xaxis.set_major_locator(MonthLocator())\n",
"ax.xaxis.set_major_formatter(DateFormatter('%b'))\n",
"ax.tick_params(axis='x', which='major', length=4, direction='inout', width=2)\n",
"ax.tick_params(axis='x', which='minor', length=3, direction='inout')\n",
"\n",
"# Setzen der y-Achsen-Grenzen\n",
"ax.set_ylim(vmin, vmax)\n",
"\n",
"# Setzen der Achsenbeschriftungen und Titel des Diagramms\n",
"ax.set_xlabel('Monate', fontsize=12)\n",
"ax.set_ylabel('Temperatur (K)', fontsize=12)\n",
"ax.set_title(f'Oberflächenwassertemperatur des Bodensees, {year}', fontsize=14, fontweight='bold')\n",
"\n",
"# Hinzufügen eines Rasters zum Diagramm und Formatierung der y-Achse\n",
"ax.grid(visible=True, color='#b0b0b0', linestyle='--', linewidth=0.8, alpha=0.6)\n",
"ax.yaxis.set_major_formatter(ticker.FormatStrFormatter('%0.2f'))\n",
"\n",
"# Hinzufügen einer Beschreibung und Quelleninformation\n",
"plt.figtext(\n",
" 0.4,\n",
" -0.05,\n",
" (\n",
" 'Beschreibung: Oberflächenwassertemperatur des Bodensees, ermittelt aus Satellitendaten des CDS.\\n'\n",
" 'Quelle: Copernicus Climate Change Service, Climate Data Store, (2020): Oberflächenwassertemperatur von Seen '\n",
" 'von 1995 bis heute, abgeleitet aus Satellitenbeobachtungen. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). '\n",
" 'DOI: 10.24381/cds.5714c668 (Zugriff am 22-01-2025)'\n",
" ),\n",
" ha='left',\n",
" va='center',\n",
" fontsize=9,\n",
" wrap=True,\n",
" backgroundcolor='w',\n",
")\n",
"\n",
"ax.legend(loc='upper left')\n",
"\n",
"# Layout anpassen und das Diagramm anzeigen\n",
"plt.tight_layout()\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"id": "2f80848e",
"metadata": {},
"source": [
"### 6.2 Visualisierung des monatlichen Durchschnitts mit Liniendiagramm"
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "bb0d4ef2",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"